Obsidan之数学公式的输入
前言:
最近在学习专升本的高数,还想继续使用Obsidian作为笔记软件,但是苦于不知道数学公式怎么输入,于是有了这一篇文章😅😎
LaTex的语法
注意:这里的数学公式都要在$在这$
,或者$$在这$$
先说下怎么换行
$$\begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned}$$
a = b + c b = c − a c = a + b \begin{aligned}a=b+c\\b=c-a\\c=a+b \end{aligned} a=b+cb=c−ac=a+b
$$\begin{matrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{matrix}$$
已 知 y = x + 3 ( x > = 0 ) 求 y 的 最 大 值 是 多 少 \begin{matrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{matrix} 已知y=x+3求y的最大值是多少(x>=0)
$$\begin{bmatrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{bmatrix}$$
[ 已 知 y = x + 3 ( x > = 0 ) 求 y 的 最 大 值 是 多 少 ] \begin{bmatrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{bmatrix} [已知y=x+3求y的最大值是多少(x>=0)]
$$\begin{Bmatrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{Bmatrix}$$
{ 已 知 y = x + 3 ( x > = 0 ) 求 y 的 最 大 值 是 多 少 } \begin{Bmatrix}已知y=\sqrt{x+3}&&(x>=0)\\求y的最大值是多少 \end{Bmatrix} {已知y=x+3求y的最大值是多少(x>=0)}
$$ \begin{vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{vmatrix} $$
∣ 0 1 2 3 4 5 6 7 8 ∣ \begin{vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{vmatrix} ∣∣∣∣∣∣036147258∣∣∣∣∣∣
$$ \begin{Vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{Vmatrix} $$
∥ 0 1 2 3 4 5 6 7 8 ∥ \begin{Vmatrix} 0&1&2\\ 3&4&5\\ 6&7&8\\ \end{Vmatrix} ∥∥∥∥∥∥036147258∥∥∥∥∥∥
- 希腊字母
α \alpha α、 β \beta β、 χ \chi χ、 Δ \Delta Δ、 Γ \Gamma Γ、 Θ \Theta Θ之类的
- 一些数学结构
- 效果如下:
$\frac{123}{999}$、$\sqrt[n]{abc}$、$\frac{\sqrt{234}}{\sqrt[n]{abc}}$、$\underrightarrow{abc}$、$\overrightarrow{abc}$
123999 \frac{123}{999} 999123、a b c n \sqrt[n]{abc} nabc、234 a b c n \frac{\sqrt{234}}{\sqrt[n]{abc}} nabc234、a b c → \underrightarrow{abc} abc、a b c → \overrightarrow{abc} abc
- 插入定界符
- 效果如下
$|$、$\|$、$\Uparrow$、$\{\}$
∣ | ∣、 ∥ \| ∥、 ⇑ \Uparrow ⇑、 { } \{\} {}
- 插入一些可变大小的符号
效果如下:
$\sum$、$\int$、$\oint$、$\iint$、$\bigcap\bigcup\bigoplus\bigotimes$
∑ \sum ∑、 ∫ \int ∫、 ∮ \oint ∮、 ∬ \iint ∬、 ⋂ ⋃ ⨁ ⨂ \bigcap\bigcup\bigoplus\bigotimes ⋂⋃⨁⨂
- 插入一些函数名称
效果如下:
$\sin$、$\cos$、$\tan$、$\log$、 $\tan(at-n\pi)$
sin \sin sin、 cos \cos cos、 tan \tan tan、 log \log log、 tan ( a t − n π ) \tan(at-n\pi) tan(at−nπ)
- 关系运算符和二进制运算符
效果如下:
$\times$、$\ast$、$\div$、$\pm$、$\leq$、$\geq$、$\neq$、$\thickapprox$、$\sqsupset$、$\subset$、$\supseteq$、$\sqsupset$、$\sqsupseteq$、$\in$
× \times ×、 ∗ \ast ∗、 ÷ \div ÷、 ± \pm ±、 ≤ \leq ≤、 ≥ \geq ≥、 ≠ \neq =、 ≈ \thickapprox ≈、 ⊐ \sqsupset ⊐、 ⊂ \subset ⊂、 ⊇ \supseteq ⊇、 ⊐ \sqsupset ⊐、 ⊒ \sqsupseteq ⊒、 ∈ \in ∈
- 插入箭头符号
效果如下:
$\leftarrow$、$\Leftarrow$、$\nLeftarrow$、$\rightleftarrows$
← \leftarrow ←、 ⇐ \Leftarrow ⇐、 ⇍ \nLeftarrow ⇍、 ⇄ \rightleftarrows ⇄
- 其他符号
- 效果如下
$\infty$、$\angle$、$\int$、$\triangle$、$\square$
∞ \infty ∞、 ∠ \angle ∠、 ∫ \int ∫、 △ \triangle △、 □ \square □
- 插入上下标
用^
表示上标,用_
表示下标记
效果如下:
sin 2 (θ)+ cos 2 (θ)=1 \sin^2(\theta) + \cos^2(\theta) = 1 sin2(θ)+cos2(θ)=1
∑ n = 1 ∞ k \sum_{n=1}^\infty k n=1∑∞k
∫ a b f(x) dx \int_a^bf(x)\,dx ∫abf(x)dx
lim x → ∞ exp(−x)=0 \lim\limits_{x\to\infty}\exp(-x) = 0 x→∞limexp(−x)=0
-
注意:
\,
在积分里的作用是为了增加些许间距,\!
会减少一些间距。 -
输出分段函数
用\begin{cases}
和\end{cases}
来构造分段函数,中间则用\\
来分段
f(x)= { 2 x , x > 0 3 x , x ≤ 0 f(x) = \begin{cases} 2x,\,\,x>0\\ 3x,\,\,x\le0\\ \end{cases} f(x)={2x,x>03x,x≤0
- 一些常见的数学公式
$$ f'(x) = x^2 + x $$
f ′ (x)= x 2 +x f'(x) = x^2 + x f′(x)=x2+x
$$ \lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8}$$
lim x → 0 9 x 5 + 7 x 3 x 2 + 6 x 8 \lim_{x\to0}\frac{9x^5+7x^3}{x^2+6x^8} x→0limx2+6x89x5+7x3
$$ \int_a^b f(x)\,dx $$
∫ a b f(x) dx \int_a^b f(x)\,dx ∫abf(x)dx
$$ \int_0^{+\infty}f(x)\,dx$$
∫ 0 + ∞ f(x) dx \int_0^{+\infty}f(x)\,dx ∫0+∞f(x)dx
$$ \int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta $$
∫x 2 + y 2 ≤ R 2 f(x,y) dx dy= ∫ θ = 0 2 π ∫ r = 0 R f(rcosθ,rsinθ) r dr dθ \int_{x^2+y^2\leq R^2} \,f(x,y)\,dx\,dy = \int_{\theta=0}^{2\pi}\int_{r=0}^R \,f(r\cos\theta,r\sin\theta)\,r\,dr\,d\theta ∫x2+y2≤R2f(x,y)dxdy=∫θ=02π∫r=0Rf(rcosθ,rsinθ)rdrdθ
$$ \int\!\!\!\int_D f(x,y)dxdy $$
∫ ∫ D f(x,y)dxdy \int\!\!\!\int_D f(x,y)dxdy ∫∫Df(x,y)dxdy
参考:
https://zhuanlan.zhihu.com/p/158156773
来源地址:https://blog.csdn.net/skoyine/article/details/125588874
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341