我的编程空间,编程开发者的网络收藏夹
学习永远不晚

各方面理解HDFS工作机制

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

各方面理解HDFS工作机制

  本篇文章首先对HDFS的重要特性和使用场景做一个简要说明,之后对HDFS的数据读写、元数据管理以及NameNode、SecondaryNamenode的工作机制进行深入分析。过程中也会对一些配置参数做一个说明。 

     深入理解一个技术的工作机制是灵活运用和快速解决问题的根本方法,也是唯一途径。对于HDFS来说除了要明白它的应用场景和用法以及通用分布式架构之外更重要的是理解关键步骤的原理和实现细节。在看这篇博文之前需要对HDFS以及分布式系统有一些了解。请参考这篇博客。本篇博文首先对HDFS的重要特性和使用场景做一个简要说明,之后对HDFS的数据读写、元数据管理以及NameNode、SecondaryNamenode的工作机制进行深入分析。过程中也会对一些配置参数做一个说明。

  一.HDFS的重要特性

  First. HDFS是一个文件系统,用于存储和管理文件,通过统一的命名空间(类似于本地文件系统的目录树)。是分布式的,服务器集群中各个节点都有自己的角色和职责。

  Then.

  1.HDFS中的文件在物理上是分块存储(block),块的大小可以通过配置参数( dfs.blocksize)来规定,默认大小在Hadoop2.x版本中是128M,之前的版本中是64M。

  2.HDFS文件系统会给客户端提供一个统一的抽象目录树,客户端通过路径来访问文件,形如:hdfs://namenode:port/dir-a/dir-b/dir-c/file.data

  3.目录结构及文件分块位置信息(元数据)的管理由namenode节点承担,namenode是HDFS集群主节点,负责维护整个hdfs文件系统的目录树,以及每一个路径(文件)所对应的数据块信息(blockid及所在的datanode服务器)

  4.文件的各个block的存储管理由datanode节点承担,datanode是HDFS集群从节点,每一个block都可以在多个datanode上存储多个副本(副本数量也可以通过参数设置dfs.replication,默认是3)

  5.Datanode会定期向Namenode汇报自身所保存的文件block信息,而namenode则会负责保持文件的副本数量,HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是通过向namenode申请来进行。

  6.HDFS是设计成适应一次写入,多次读出的场景,且不支持文件的修改。需要频繁的RPC交互,写入性能不好。

  二.HDFS写数据分析

  1.概述

  客户端要向HDFS写数据,首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本。

  2.写数据步骤详解

各方面理解HDFS工作机制_Hadoop_Linux_大数据_编程学习网教育

                                                                              (图片来自网络,仅供参考)

      1)客户端向namenode发送上传文件请求,namenode对要上传目录和文件进行检查,判断是否可以上传,并向客户端返回检查结果。

  2)客户端得到上传文件的允许后读取客户端配置,如果没有指定配置则会读取默认配置(例如副本数和块大小默认为3和128M,副本是由客户端决定的)。向namenode请求上传一个数据块。

  3)namenode会根据客户端的配置来查询datanode信息,如果使用默认配置,那么最终结果会返回同一个机架的两个datanode和另一个机架的datanode。这称为“机架感知”策略。

  机架感知:HDFS采用一种称为机架感知(rack-aware)的策略来改进数据的可靠性、可用性和网络带宽的利用率。大型HDFS实例一般运行在跨越多个机架的计算机组成的集群上,不同机架上的两台机器之间的通讯需要经过交换机。在大多数情况下,同一个机架内的两台机器间的带宽会比不同机架的两台机器间的带宽大。通过一个机架感知的过程,Namenode可以确定每个Datanode所属的机架id。一个简单但没有优化的策略就是将副本存放在不同的机架上。这样可以有效防止当整个机架失效时数据的丢失,并且允许读数据的时候充分利用多个机架的带宽。这种策略设置可以将副本均匀分布在集群中,有利于当组件失效情况下的负载均衡。但是,因为这种策略的一个写操作需要传输数据块到多个机架,这增加了写的代价。在大多数情况下,副本系数是3,HDFS的存放策略是将一个副本存放在本地机架的节点上,一个副本放在同一机架的另一个节点上,最后一个副本放在不同机架的节点上。这种策略减少了机架间的数据传输,这就提高了写操作的效率。机架的错误远远比节点的错误少,所以这个策略不会影响到数据的可靠性和可用性。于此同时,因为数据块只放在两个(不是三个)不同的机架上,所以此策略减少了读取数据时需要的网络传输总带宽。在这种策略下,副本并不是均匀分布在不同的机架上。三分之一的副本在一个节点上,三分之二的副本在一个机架上,其他副本均匀分布在剩下的机架中,这一策略在不损害数据可靠性和读取性能的情况下改进了写的性能。

  4)客户端在开始传输数据块之前会把数据缓存在本地,当缓存大小超过了一个数据块的大小,客户端就会从namenode获取要上传的datanode列表。之后会在客户端和第一个datanode建立连接开始流式的传输数据,这个datanode会一小部分一小部分(4K)的接收数据然后写入本地仓库,同时会把这些数据传输到第二个datanode,第二个datanode也同样一小部分一小部分的接收数据并写入本地仓库,同时传输给第三个datanode,依次类推。这样逐级调用和返回之后,待这个数据块传输完成客户端后告诉namenode数据块传输完成,这时候namenode才会更新元数据信息记录操作日志。

  5)第一个数据块传输完成后会使用同样的方式传输下面的数据块直到整个文件上传完成。

  细节:

  a.请求和应答是使用RPC的方式,客户端通过ClientProtocol与namenode通信,namenode和datanode之间使用DatanodeProtocol交互。在设计上,namenode不会主动发起RPC,而是响应来自客户端或 datanode 的RPC请求。客户端和datanode之间是使用socket进行数据传输,和namenode之间的交互采用nio封装的RPC。

  b.HDFS有自己的序列化协议。

  c.在数据块传输成功后但客户端没有告诉namenode之前如果namenode宕机那么这个数据块就会丢失。

  d.在流式复制时,逐级传输和响应采用响应队列来等待传输结果。队列响应完成后返回给客户端。

  c.在流式复制时如果有一台或两台(不是全部)没有复制成功,不影响最后结果,只不过datanode会定期向namenode汇报自身信息。如果发现异常namenode会指挥datanode删除残余数据和完善副本。如果副本数量少于某个最小值就会进入安全模式。

  安全模式:Namenode启动后会进入一个称为安全模式的特殊状态。处于安全模式的Namenode是不会进行数据块的复制的。Namenode从所有的 Datanode接收心跳信号和块状态报告。块状态报告包括了某个Datanode所有的数据块列表。每个数据块都有一个指定的最小副本数。当Namenode检测确认某个数据块的副本数目达到这个最小值,那么该数据块就会被认为是副本安全(safely replicated)的;在一定百分比(这个参数可配置)的数据块被Namenode检测确认是安全之后(加上一个额外的30秒等待时间),Namenode将退出安全模式状态。接下来它会确定还有哪些数据块的副本没有达到指定数目,并将这些数据块复制到其他Datanode上。

  HDFS特点和目标

  硬件故障

  硬件故障是常态,而不是异常。整个HDFS系统将由数百或数千个存储着文件数据片断的服务器组成。实际上它里面有非常巨大的组成部分,每一个组成部分都很可能出现故障,这就意味着HDFS里的总是有一些部件是失效的,因此,故障的检测和自动快速恢复是HDFS一个很核心的设计目标。

  数据访问

  运行在HDFS之上的应用程序必须流式地访问它们的数据集,它不是运行在普通文件系统之上的普通程序。HDFS被设计成适合批量处理的,而不是用户交互式的。重点是在数据吞吐量,而不是数据访问的反应时间,POSIX的很多硬性需求对于HDFS应用都是非必须的,去掉POSIX一小部分关键语义可以获得更好的数据吞吐率。

  大数据集

  运行在HDFS之上的程序有很大量的数据集。典型的HDFS文件大小是GB到TB的级别。所以,HDFS被调整成支持大文件。它应该提供很高的聚合数据带宽,一个集群中支持数百个节点,一个集群中还应该支持千万级别的文件。

  简单一致性模型

  大部分的HDFS程序对文件操作需要的是一次写多次读取的操作模式。一个文件一旦创建、写入、关闭之后就不需要修改了。这个假定简单化了数据一致的问题,并使高吞吐量的数据访问变得可能。一个Map-Reduce程序或者网络爬虫程序都可以完美地适合这个模型。

  移动计算比移动数据更经济

  在靠近计算数据所存储的位置来进行计算是最理想的状态,尤其是在数据集特别巨大的时候。这样消除了网络的拥堵,提高了系统的整体吞吐量。一个假定就是迁移计算到离数据更近的位置比将数据移动到程序运行更近的位置要更好。HDFS提供了接口,来让程序将自己移动到离数据存储更近的位置。

  异构软硬件平台间的可移植性

  HDFS被设计成可以简便地实现平台间的迁移,这将推动需要大数据集的应用更广泛地采用HDFS作为平台。

  名字节点和数据节点

  HDFS是一个主从结构,一个HDFS集群是由一个名字节点,它是一个管理文件命名空间和调节客户端访问文件的主服务器,当然还有一些数据节点,通常是一个节点一个机器,它来管理对应节点的存储。HDFS对外开放文件命名空间并允许用户数据以文件形式存储。

  内部机制是将一个文件分割成一个或多个块,这些块被存储在一组数据节点中。名字节点用来操作文件命名空间的文件或目录操作,如打开,关闭,重命名等等。它同时确定块与数据节点的映射。数据节点负责来自文件系统客户的读写请求。数据节点同时还要执行块的创建,删除,和来自名字节点的块复制指令。

  名字节点和数据节点都是运行在普通的机器之上的软件,机器典型的都是GNU/Linux,HDFS是用java编写的,任何支持java的机器都可以运行名字节点或数据节点,利用java语言的超轻便型,很容易将HDFS部署到大范围的机器上。典型的部署是由一个专门的机器来运行名字节点软件,集群中的其他每台机器运行一个数据节点实例。体系结构不排斥在一个机器上运行多个数据节点的实例,但是实际的部署不会有这种情况。

  集群中只有一个名字节点极大地简单化了系统的体系结构。名字节点是仲裁者和所有HDFS元数据的仓库,用户的实际数据不经过名字节点。

  三.HDFS读数据分析

  1.概述

  客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件。

  2.读数据步骤详解

客户端将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件。

                                                                        (图片来源于网络,仅供参考)

  1)客户端向namenode发起RPC调用,请求读取文件数据。

  2)namenode检查文件是否存在,如果存在则获取文件的元信息(blockid以及对应的datanode列表)。

  3)客户端收到元信息后选取一个网络距离最近的datanode,依次请求读取每个数据块。客户端首先要校检文件是否损坏,如果损坏,客户端会选取另外的datanode请求。

  4)datanode与客户端简历socket连接,传输对应的数据块,客户端收到数据缓存到本地,之后写入文件。

  5)依次传输剩下的数据块,直到整个文件合并完成。

  从某个Datanode获取的数据块有可能是损坏的,损坏可能是由Datanode的存储设备错误、网络错误或者软件bug造成的。HDFS客户端软件实现了对HDFS文件内容的校验和(checksum)检查。当客户端创建一个新的HDFS文件,会计算这个文件每个数据块的校验和,并将校验和作为一个单独的隐藏文件保存在同一个HDFS名字空间下。当客户端获取文件内容后,它会检验从Datanode获取的数据跟相应的校验和文件中的校验和是否匹配,如果不匹配,客户端可以选择从其他Datanode获取该数据块的副本。

  四.HDFS删除数据分析

  HDFS删除数据比较流程相对简单,只列出详细步骤:

  1)客户端向namenode发起RPC调用,请求删除文件。namenode检查合法性。

  2)namenode查询文件相关元信息,向存储文件数据块的datanode发出删除请求。

  3)datanode删除相关数据块。返回结果。

  4)namenode返回结果给客户端。

  当用户或应用程序删除某个文件时,这个文件并没有立刻从HDFS中删除。实际上,HDFS会将这个文件重命名转移到/trash目录。只要文件还在/trash目录中,该文件就可以被迅速地恢复。文件在/trash中保存的时间是可配置的,当超过这个时间时,Namenode就会将该文件从名字空间中删除。删除文件会使得该文件相关的数据块被释放。注意,从用户删除文件到HDFS空闲空间的增加之间会有一定时间的延迟。只要被删除的文件还在/trash目录中,用户就可以恢复这个文件。如果用户想恢复被删除的文件,他/她可以浏览/trash目录找回该文件。/trash目录仅仅保存被删除文件的最后副本。/trash目录与其他的目录没有什么区别,除了一点:在该目录上HDFS会应用一个特殊策略来自动删除文件。目前的默认策略是删除/trash中保留时间超过6小时的文件。将来,这个策略可以通过一个被良好定义的接口配置。

  当一个文件的副本系数被减小后,Namenode会选择过剩的副本删除。下次心跳检测时会将该信息传递给Datanode。Datanode遂即移除相应的数据块,集群中的空闲空间加大。同样,在调用setReplication API结束和集群中空闲空间增加间会有一定的延迟。

  五.NameNode元数据管理原理分析

  1.概述

  首先明确namenode的职责:响应客户端请求、管理元数据。

  namenode对元数据有三种存储方式:

  内存元数据(NameSystem)

  磁盘元数据镜像文件

  数据操作日志文件(可通过日志运算出元数据)

  细节:HDFS不适合存储小文件的原因,每个文件都会产生元信息,当小文件多了之后元信息也就多了,对namenode会造成压力。

  2.对三种存储机制的进一步解释

  内存元数据就是当前namenode正在使用的元数据,是存储在内存中的。

  磁盘元数据镜像文件是内存元数据的镜像,保存在namenode工作目录中,它是一个准元数据,作用是在namenode宕机时能够快速较准确的恢复元数据。称为fsimage。

  数据操作日志文件是用来记录元数据操作的,在每次改动元数据时都会追加日志记录,如果有完整的日志就可以还原完整的元数据。主要作用是用来完善fsimage,减少fsimage和内存元数据的差距。称为editslog。

  3.checkpoint机制分析

  因为namenode本身的任务就非常重要,为了不再给namenode压力,日志合并到fsimage就引入了另一个角色secondarynamenode。secondarynamenode负责定期把editslog合并到fsimage,“定期”是namenode向secondarynamenode发送RPC请求的,是按时间或者日志记录条数为“间隔”的,这样即不会浪费合并操作又不会造成fsimage和内存元数据有很大的差距。因为元数据的改变频率是不固定的。

  每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)。

每隔一段时间,会由secondary namenode将namenode上积累的所有edits和一个最新的fsimage下载到本地,并加载到内存进行merge(这个过程称为checkpoint)。

                                                                             (图片来源于网络,仅供参考)

  1)namenode向secondarynamenode发送RPC请求,请求合并editslog到fsimage。

  2)secondarynamenode收到请求后从namenode上读取(通过http服务)editslog(多个,滚动日志文件)和fsimage文件。

  3)secondarynamenode会根据拿到的editslog合并到fsimage。形成最新的fsimage文件。(中间有很多步骤,把文件加载到内存,还原成元数据结构,合并,再生成文件,新生成的文件名为fsimage.checkpoint)。

  4)secondarynamenode通过http服务把fsimage.checkpoint文件上传到namenode,并且通过RPC调用把文件改名为fsimage。

  namenode和secondary namenode的工作目录存储结构完全相同,所以,当namenode故障退出需要重新恢复时,可以从secondary namenode的工作目录中将fsimage拷贝到namenode的工作目录,以恢复namenode的元数据。

  关于checkpoint操作的配置:

  dfs.namenode.checkpoint.check.period=60 #检查触发条件是否满足的频率,60秒

  dfs.namenode.checkpoint.dir=file://${hadoop.tmp.dir}/dfs/namesecondary

  #以上两个参数做checkpoint操作时,secondary namenode的本地工作目录

  dfs.namenode.checkpoint.edits.dir=${dfs.namenode.checkpoint.dir}

  dfs.namenode.checkpoint.max-retries=3 #最大重试次数

  dfs.namenode.checkpoint.period=3600 #两次checkpoint之间的时间间隔3600秒

  dfs.namenode.checkpoint.txns=1000000 #两次checkpoint之间最大的操作记录

  editslog和fsimage文件存储在$dfs.namenode.name.dir/current目录下,这个目录可以在hdfs-site.xml中配置的。这个目录下的文件结构如下:

包括edits日志文件(滚动的多个文件),有一个是edits_inprogress_*是当前正在写的日志。fsimage文件以及md5校检文件。seen_txid是记录当前滚动序号,代表seen_txid之前的日志都已经合并完成。

  包括edits日志文件(滚动的多个文件),有一个是edits_inprogress_*是当前正在写的日志。fsimage文件以及md5校检文件。seen_txid是记录当前滚动序号,代表seen_txid之前的日志都已经合并完成。

  $dfs.namenode.name.dir/current/seen_txid非常重要,是存放transactionId的文件,format之后是0,它代表的是namenode里面的edits_*文件的尾数,namenode重启的时候,会按照seen_txid的数字恢复。所以当你的hdfs发生异常重启的时候,一定要比对seen_txid内的数字是不是你edits最后的尾数,不然会发生重启namenode时metaData的资料有缺少,导致误删Datanode上多余Block的信息。

  总结

  深入理解了以上介绍的工作机制就可以尝试运用他们解决工作和学习中遇到的问题了,只要真正理解了核心原理,所有问题都可以自己找到答案。就是要不断的学习、实践、总结,再学习、再实践、再总结。这样才能扎扎实实做的出色。共勉。

     结束语:本篇文章到这里就结束了,各位小伙伴有过有什么不理解或者不懂的地方随时可以提出来,编程学习网随时为你解答,如果还想了解更多的这方面的知识和内容,也可以随时登陆编程学习网哟~

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

各方面理解HDFS工作机制

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

各方面理解HDFS工作机制

深入理解一个技术的工作机制是灵活运用和快速解决问题的根本方法,也是唯一途径。对于HDFS来说除了要明白它的应用场景和用法以及通用分布式架构之外更重要的是理解关键步骤的原理和实现细节。编程学习网教育
各方面理解HDFS工作机制
2024-04-23

Linux NFS机制工作原理及实例解析

什么是NFS network file system 网络文件系统 通过网络存储和组织文件的一种方法或机制。 为什么要用NFS 前端所有的应用服务器接收到用户上传的图片、文件、视频,都会统一放到后端的存储上。 共享存储的好处:方便数据的查找
2022-06-03

如何理解K8s中GPU管理和Device Plugin工作机制

如何理解K8s中GPU管理和Device Plugin工作机制,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。需求来源经过近几年的发展,AI 有了许许多多的落地场景,包括智能
2023-06-04

深入理解Go语言接口的工作机制和实现方法

解析Go语言接口的工作原理和实现方式一、引言作为一种现代化、高性能的编程语言,Go语言在许多方面都有着出色的设计和实现。其中,接口是Go语言中一项非常重要的特性,它不仅能提供代码复用的功能,还能在不修改已有代码的情况下实现代码的扩展和更
深入理解Go语言接口的工作机制和实现方法
2024-02-02

揭秘PHP Web服务的幕后机制:全方位解析其工作原理!

PHP Web服务是一种流行的网络服务器,用于处理HTTP请求。它支持多种特性和功能,使其成为网站和应用程序的理想选择。本文将揭示PHP Web服务的幕后机制,详细解析其工作原理。
揭秘PHP Web服务的幕后机制:全方位解析其工作原理!
2024-02-05

Win10 Microsoft管理控制台停止工作的解决方法

Windows系统自带的一些系统功能经常在系统使用过程中提示各种问题,比如有网友遇到Win10系统提示Microsoft管理控制台已停止工编程客栈作,这该怎么解决呢?提示内容Microsoft管理控制台已停止工作编程客栈出现了一个问题,导致
2023-06-11

深入理解PHP SSO单点登录的工作原理和技术机制

随着互联网的快速发展,各种网站和应用的数量也日益增多。用户为了访问不同的网站和应用,需要分别注册不同的账号和密码,给用户带来了不便和烦恼。为了解决这个问题,单点登录(Single Sign-On,SSO)应运而生。SSO是一种授权认证系统,
2023-10-21

解密numpy库:揭秘其背后的算法原理和工作机制

解密numpy库:揭秘其背后的算法原理和工作机制随着科技的飞速发展,数据科学已经成为一个极其重要的领域。其中,数据的处理和分析是数据科学中最为核心的环节。而且,随着数据量越来越大,数据的处理速度也成为了一个不可忽视的问题。在数据科学领域
解密numpy库:揭秘其背后的算法原理和工作机制
2024-01-19

Java中的反射机制是如何工作的?有哪些应用场景?(请解释Java反射机制的工作原理及其应用场景。)

Java反射机制通过加载类并获取其信息,允许程序在运行时动态检查和调用类、方法和字段。它在动态加载类、创建代理对象、测试自动化、自定义序列化、元编程和JavaBeans内省等场景中广泛应用,但需要注意性能开销、安全隐患和复杂性。
Java中的反射机制是如何工作的?有哪些应用场景?(请解释Java反射机制的工作原理及其应用场景。)
2024-04-02

PHP缓存机制详解:深入探究其工作原理和实际应用

PHP缓存机制全解析:深入理解其原理与应用引言:在开发Web应用程序中,缓存是一种重要的技术手段,能够显著提升应用程序的性能和用户体验。而PHP作为一种常用的服务器端编程语言,也提供了丰富的缓存机制供开发者使用。本文将深入探讨PHP缓存机
PHP缓存机制详解:深入探究其工作原理和实际应用
2024-01-23

深入理解Elasticsearch的分布式索引机制(Elasticsearch分布式索引如何工作?)

Elasticsearch的分布式索引机制是一种高可用、可扩展且容错的数据管理方式。它使用分片将索引细分,并创建副本以提高数据可用性。主分片处理写入,副本分片处理读取。分片分配策略用于确定分片存储位置。路由机制确保文档始终路由到相同的分片,优化查询性能。合并有助于维护分片大小,提高性能并减少存储开销。通过分布式索引机制,Elasticsearch实现了高可用性、可伸缩性、故障容错性、并行处理和优化查询性能。
深入理解Elasticsearch的分布式索引机制(Elasticsearch分布式索引如何工作?)
2024-04-02

Solr搜索引擎的核心架构及工作原理详解(Solr搜索引擎的内部结构和工作机制是怎样的?)

Solr搜索引擎基于ApacheLucene构建,具有高性能、可扩展性和容错性。其核心架构包括模式、核心、处理器、索引、文档、查询、结果和分面。Solr的工作原理包含索引构建、查询解析、查询优化、查询执行、结果排序、分面聚合等步骤。Solr具备高性能、可扩展性、容错性、可定制性和社区支持等优势,使其广泛用于各种应用程序中。
Solr搜索引擎的核心架构及工作原理详解(Solr搜索引擎的内部结构和工作机制是怎样的?)
2024-04-02

Sphinx全文搜索引擎的架构与工作原理详解(Sphinx搜索引擎的内部结构和工作机制是怎样的?)

Sphinx全文搜索引擎采用分布式架构,包括索引服务器、搜索服务器和代理服务器。索引建立过程涉及词项提取、分词和索引创建。搜索查询处理包括在倒排索引中查找匹配文档。结果返回包括从索引服务器获取内容并排序。Sphinx特点包括可伸缩性、高性能、相关性、灵活性、可配置性等,适用于电子商务搜索、网站搜索、数据挖掘等场景。
Sphinx全文搜索引擎的架构与工作原理详解(Sphinx搜索引擎的内部结构和工作机制是怎样的?)
2024-04-02

PHP中的命名空间和自动加载机制是如何工作的?(请解释PHP命名空间和自动加载的原理。)

PHP命名空间用于组织代码,避免命名冲突,而自动加载机制则自动加载类和接口。命名空间使用反斜杠表示,例如namespaceMyAppModels;。自动加载函数使用spl_autoload_register()注册,并根据类名确定文件位置。命名空间和自动加载协同工作,简化代码管理、避免冲突、提高可读性和性能。
PHP中的命名空间和自动加载机制是如何工作的?(请解释PHP命名空间和自动加载的原理。)
2024-04-02

编程热搜

  • Mysql分表查询海量数据和解决方案
    众所周知数据库的管理往往离不开各种的数据优化,而要想进行优化通常我们都是通过参数来完成优化的。那么到底这些参数有哪些呢?为此在本篇文章中编程学习网笔者就为大家简单介绍MySQL,以供大家参考参考,希望能帮助到大家。以上就是关于大数据的知识点了。喜欢的可以分享给你的朋友,也可以点赞噢~更多内容,就在编程学习网!
    Mysql分表查询海量数据和解决方案
  • 大数据的妙用及17年趋势
    2017年,支持大量结构化和非结构化数据的系统将继续增长。市场需要数据平台来帮助数据管理人员管理和保护大数据,同时允许最终用户进行数据分析。这些系统将逐步成熟,在企业内部的IT系统中更好地运行。所以,我们更要了解大数据!互联网普及使得网民的行为更加多元化,通过互联网产生的数据发展更加迅猛,更具代表性。互联网世界中的商品信息、社交媒体中的图片、文本信息以及视频网站的视频信息,互联网世界中的人与人交互信息、位置信息等,都已经成为大数据的最重要也是增长最快的来源。大家都了解到了吗!更多内容就在编程学习网哟
    大数据的妙用及17年趋势
  • 5G大数据时代空降来袭
    欢迎各位阅读本篇文章,本文主要讲了5G大数据时代。如今 5G 概念已不再陌生,按照行业认同的说法:2017年至2018年 5G 将在国内开始有序测试,2019年进行预商用。工信部之前已表示,中国将在2020年启动 5G 商用。编程学习网教育平台提醒各位:本篇文章纯干货~因此大家一定要认真阅读本篇文章哦!
    5G大数据时代空降来袭
  • es详解-原理-从图解构筑对es原理的初步认知
    在学习ElasticSearch原理时,我推荐你先通过官方博客中的一篇图解文章(虽然是基于2.x版本)来构筑对ES的初步认知(这种认识是体系上的快速认知)。ES详解 - 原理:从图解构筑对ES原理的初步认知前言图解ElasticSearch图解LuceneSegmentInverted IndexStored Fiel
    es详解-原理-从图解构筑对es原理的初步认知
  • elasticsearch-wrapperquery
    在工作中遇到ElasticSearch版本升级时出现Java High Level接口变更导致的兼容性问题: 之前使用的是2.4.x,考虑性能和功能的增强,需要更换为6.4.x; 2.4.x中我们使用DSL语句直接查询(数据的不确定性和方便动态建立查询规则等因素),而新的ES Java 高阶API中去掉了相关接口的支持
    elasticsearch-wrapperquery
  • 学习大数据营销思维(下)
    编程学习网: 其实,通过上面的介绍,我们知道苹果通过各类产品与服务销售相互促进以理及薄利多销的方式来盈利第二种战略联盟类型是合作方的共同赢利。苹果公司打造了一个参与方共同受益的业务系统。
    学习大数据营销思维(下)
  • 纯干货:HLS 协议详解及优化技术全面解析
    编程学习网:HLS (HTTP Live Streaming), 是由 Apple 公司实现的基于 HTTP 的媒体流传输协议。他跟 DASH 协议的原理非常类似,通过将整条流切割成一个小的可以通过 HTTP 下载的媒体文件,然后提供一个配套的媒体列表文件给客户端,让客户端顺序地拉取这些媒体文件播放, 来实现看上去是在播放一条流的效果。HLS 目前广泛地应用于点播和直播领域。
    纯干货:HLS 协议详解及优化技术全面解析
  • 关于Python 代码全面分析
    欢迎各位阅读本篇,Python(KK 英语发音:/ˈpaɪθən/)是一种面向对象、直译式计算机程序设计语言。本篇文章讲述了关于Python 代码全面分析。
    关于Python 代码全面分析
  • es详解-原理-es原理之索引文档流程详解
    ElasticSearch中最重要原理是文档的索引和文档的读取,本文带你理解ES文档的索引过程。ES详解 - 原理:ES原理之索引文档流程详解文档索引步骤顺序单个文档多个文档文档索引过程详解整体的索引流程分步骤看数据持久化过程深入ElasticSearch索引文档的实现机制写操作的关键点Lucene的写Elastics
    es详解-原理-es原理之索引文档流程详解
  • 五大“网管”必备的网络数据分析工具
    是不是在为如何分析统计网络数据和流量烦恼呢?想不想监控、运维、排障轻松一些?下面给大家提供一些免费网络分析工具,以帮助大家更好的掌控自己的网络!编程学习网教育
    五大“网管”必备的网络数据分析工具

目录