我的编程空间,编程开发者的网络收藏夹
学习永远不晚

读Json文件生成pandas数据框详情

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

读Json文件生成pandas数据框详情

前言

本文讲解如何加载json文件或字符串为pandas数据框。pandas把json数据分成几种典型类型,希望对你实际数据应用开发有所启示。

有时可能需要转换json文件位pandas数据框。使用pandas内置的read_json()函数很容易实现,

其语法如下:

read_json(‘path’, orient=’index’)

  • path: json文件的路径
  • orient: json文件的格式描述,缺省是index,还有其他选型:split, records, columns, values

下面通过几个示例进行说明。

records格式

假设json文件my_file.json的格式如下:

[
   {
      "points": 25,
      "assists": 5
   },
   {
      "points": 12,
      "assists": 7
   },
   {
      "points": 15,
      "assists": 7
   },
   {
      "points": 19,
      "assists": 12
   }
] 

我们使用pandas的函数read_json,只要只从orient参数位records:

# 加载json文件,生成pandas数据框
df = pd.read_json('data/json_file.json', orient='records')

# 查看数据框
print(df)

输出结果:

   points  assists
0      25        5
1      12        7
2      15        7
3      19       12

index格式

假设json文件格式为:

{
   "0": {
      "points": 25,
      "assists": 5
   },
   "1": {
      "points": 12,
      "assists": 7
   },
   "2": {
      "points": 15,
      "assists": 7
   },
   "3": {
      "points": 19,
      "assists": 12
   }
} 

与上面实现代码一样,仅需要修改orient=‘index’:

import pandas as pd

df = pd.read_json("data/my_file.json", orient='index')
print(df)

输出结果:

   points  assists
0      25        5
1      12        7
2      15        7
3      19       12

columns 类型

假设json文件格式为:

{
   "points": {
      "0": 25,
      "1": 12,
      "2": 15,
      "3": 19
   },
   "assists": {
      "0": 5,
      "1": 7,
      "2": 7,
      "3": 12
   }
} 

加载代码修改orient参数为’columns’:

import pandas as pd

df = pd.read_json("data/my_file.json", orient='columns')

print(df)

结果与上面一致。

values格式

假设json文件代码如下:

[
   [
      25,
      5
   ],
   [
      12,
      7
   ],
   [
      15,
      7
   ],
   [
      19,
      12
   ]
] 

加载代码如下:

import pandas as pd

df = pd.read_json("data/my_file.json", orient='values')

print(df)

输出结果:

    0   1
0  25   5
1  12   7
2  15   7
3  19  12

split 参数示例

下面看split参数示例:

import pandas as pd

# 示例数据
data =  '{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}'
df = pd.read_json(data, orient='split')

print(df)

输出交叉表形式结果:

      col 1 col 2
row 1     a     b
row 2     c     d

如果不指定index,则行自动生成序号:

import pandas as pd

data =  '{"columns":["col 1","col 2"],  "data":[["a","b"],["c","d"]]}'
df = pd.read_json(data, orient='split')

print(df)

输出结果:

  col 1 col 2
0     a     b
1     c     d

压缩与编码

使用compression参数可以解压并载入json文件,参数选型有:‘zip’, ‘gzip’, ‘bz2’, ‘zstd’。如果指定zip,则确保文件为zip文件格式,None表示不解压。

使用 encoding 指定自定义编码,缺省为 UTF-8 编码。

假设my_file.zip压缩文件格式为:

[
   [
      25,
      5
   ],
   [
      12,
      7
   ],
   [
      15,
      7
   ],
   [
      19,
      12
   ]
]

载入代码:

import pandas as pd
df = pd.read_json("data/my_file.zip", orient='values', compression='zip')
print(df)

到此这篇关于读Json文件生成pandas数据框详情的文章就介绍到这了,更多相关Json生成pandas数据框内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

读Json文件生成pandas数据框详情

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录