我的编程空间,编程开发者的网络收藏夹
学习永远不晚

用Python进行栅格数据的分区统计和批量提取

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

用Python进行栅格数据的分区统计和批量提取

有时候我们会有这样的想法,就是针对某个区域的栅格数据,要提取它的平均值或者其他统计指标,比如在一个省内提取多年的降雨数据,最后分区域地计算一些统计值,或者从多个栅格数据中提取某个区域的数值形成一个序列。为了方便,画一个示意图看看,比如就像提取这个区域中的某一个市的区域,然后形成一个序列数据,这就可以使用rasterstats库了,此外的分区统计也可以用这个库

这个实验使用的数据格式分别是栅格(*.tif)和矢量(.shp),之后的分区统计操作和栅格数据的提取都是源于这两类数据。为了能使用上这个rasterstats库,选择了在google colab平台运行脚本,因为安装库实在是太方便了,在win上老是安装不上的,在google notebook立马就搞定了,而且可以把数据存储到谷歌云盘,直接在notebook中就是可以链接使用的

那么现在就开始做测试,使用的数据就是左侧的栅格和矢量数据集
导入相关的模块


import geopandas as gpd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import rasterio
import rasterstats
from rasterio.plot import show
# show()方法用来展示栅格图形
from rasterio.plot import show_hist
# 用来展示直方图
import cartopy.crs as ccrs
import cartopy.feature as cfeature
from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

使用geopandas和rasterio分别读取矢量和栅格数据


# 使用geopandas读取矢量数据
districts = gpd.read_file('/content/drive/MyDrive/Datashpraster/Data/Districts/districts.shp')

# 使用rasterio读取栅格数据,栅格数据和矢量数据的坐标投影需要一致
raster = rasterio.open('/content/drive/MyDrive/Datashpraster/Data/Rainfall Data Rasters/2020-4-1.tif')

# 把矢量数据和栅格数据绘制到一个axis上,这个axis不是坐标轴,而是图形
plt.rcParams['font.family'] = 'Times New Roman'
plt.rcParams['font.size'] = 20

fig, (ax1,ax2) = plt.subplots(1,2,figsize=(15,6))

show(raster, ax=ax1,title='Rainfall')
# 读取进来的矢量数据可以直接调用gpd的plot()方法绘制
districts.plot(ax=ax1, facecolor='None', edgecolor='red')
show_hist(raster,ax=ax2,title='hist')

plt.show()

先绘制一下结果看看

读取栅格数据:


# 提取雨量栅格值到numpy数组
# 遵循GDAL规则从第一波段读取
rainfall_data = raster.read(1)
rainfall_data

开始分区统计:


# 设置坐标变换信息
affine = raster.transform

# 准备开始进行空间分区计算
# 第一个参数是矢量分区,第二个是栅格,第三个是坐标变换信息,第四个是统计均值
avg_rallrain = rasterstats.zonal_stats(districts,rainfall_data,affine=affine,stats=['mean'],geojson_out=True)
# avg_rallrain

# 除了统计平均值之外,还有最大最小值那些

绘制一下,只是一个简单的图形而已

当然第二部分更有意思,就是从多个分散的栅格数据中提取数据形成一个序列

,就是这些tif数据

loop这些栅格数据集:

获得提取到的结果,没错,就是这么一个序列数据,然后就是绘图了

转换数据格式


# 将Date列转为时间型
data['Date'] = pd.to_datetime(data['Date'], infer_datetime_format=True)

# print(data)

data['Date'] = data['Date'].dt.date
print(data)

绘图结果就是简单的图形而已


# 准备绘制图形
fig,(ax1,ax2)= plt.subplots(2,1,figsize=(18,6))
plt.rcParams['font.size'] = 15

data.plot(x='Date', y='Average_RF_Porto', ax=ax1, kind='bar', title='Avg_Rail_Porto')
data.plot(x='Date', y='Average_RF_Faro', ax=ax2, kind='bar', title='Avg_Rail_Faro',color='red')

#自动调整图形的分布
plt.tight_layout()
plt.show()

结果就这样一个序列图,目的就是从栅格提取指定的研究区,然后提取栅格的值,再来绘图

虽然感觉不是那么花里胡哨的图,但这个应该还是比较实用的,特别是大批量提取栅格值的时候。由于在google colab里面操作的步骤比较多,中间可能有省略的地方,但重要的应该都在文中了,当然也可以迁移运用到其他地方,也可以查看一下这个第三方库的教程,比如read(1)是什么意思,官网的docs就写得有,实在是很方便的

以上就是用Python进行栅格数据的分区统计和批量提取的详细内容,更多关于Python 栅格数据的分区统计和批量提取 的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

用Python进行栅格数据的分区统计和批量提取

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

用Python进行栅格数据的分区统计和批量提取

有时候我们会有这样的想法,就是针对某个区域的栅格数据,要提取它的平均值或者其他统计指标,比如在一个省内提取多年的降雨数据,最后分区域地计算一些统计值,或者从多个栅格数据中提取某个区域的数值形成一个序列。为了方便,画一个示意图看看,比如就像提
2022-06-02

怎么用Python进行栅格数据的分区统计和批量提取

小编给大家分享一下怎么用Python进行栅格数据的分区统计和批量提取,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!有时候我们会有这样的想法,就是针对某个区域的栅格数据,要提取它的平均值或者其他统计指标,比如在一个省内提取多
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录