我的编程空间,编程开发者的网络收藏夹
学习永远不晚

图邻接矩阵可视化解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

图邻接矩阵可视化解析

使用工具

#导入模块
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
import scipy.sparse as sp

准备数据

# 邻接矩阵
Matrix = np.array(
    [
        [0, 1, 1, 1, 1, 1, 0, 0],  # a
        [0, 0, 1, 0, 1, 0, 0, 0],  # b
        [0, 0, 0, 1, 0, 0, 0, 0],  # c
        [0, 0, 0, 0, 1, 0, 0, 0],  # d
        [0, 0, 0, 0, 0, 1, 0, 0],  # e
        [0, 0, 1, 0, 0, 0, 1, 1],  # f
        [0, 0, 0, 0, 0, 1, 0, 1],  # g
        [0, 0, 0, 0, 0, 1, 1, 0]  # h
    ]
)

转化临界矩阵

def get_matrix_triad(coo_matrix , data=False):
	'''
		获取矩阵的元组表示  (row,col)
		data 为 True 时 (row,col,data)
	:dependent  scipy
	:param coo_matrix: 三元组表示的稀疏矩阵  类型可以为 numpy.ndarray
	:param data: 是否需要 data值
	:return:
		list
	'''
	# 检查类型
	if not sp.isspmatrix_coo(coo_matrix):
		# 转化为三元组表示的稀疏矩阵
		coo_matrix = sp.coo_matrix(coo_matrix)
	# nx3的矩阵  列分别为 矩阵行,矩阵列及对应的矩阵值
	temp = np.vstack((coo_matrix.row , coo_matrix.col , coo_matrix.data)).transpose()
	return temp.tolist()

测试

edags = get_matrix_triad(Matrix)
-->
[[0.0, 0.0, 1.0],
 [0.0, 1.0, 1.0],
 [0.0, 2.0, 1.0],
 [0.0, 3.0, 1.0],
 [0.0, 4.0, 1.0],
 [0.0, 5.0, 1.0],
 [1.0, 1.0, 1.0],
 [1.0, 2.0, 1.0],
 [1.0, 4.0, 1.0],
 [2.0, 2.0, 1.0],
 [2.0, 3.0, 1.0],
 [3.0, 3.0, 1.0],
 [3.0, 4.0, 1.0],
 [4.0, 4.0, 1.0],
 [4.0, 5.0, 1.0],
 [5.0, 2.0, 1.0],
 [5.0, 5.0, 1.0],
 [5.0, 6.0, 1.0],
 [5.0, 7.0, 1.0],
 [6.0, 5.0, 1.0],
 [6.0, 6.0, 1.0],
 [6.0, 7.0, 1.0],
 [7.0, 5.0, 1.0],
 [7.0, 6.0, 1.0],
 [7.0, 7.0, 1.0]]

创建图

# 创建一个没有边,没有节点的空图Graph
G = nx.Graph()

添加节点

按照节点的个数添加节点

H = nx.path_graph(Matrix.shape[0]) 
G.add_nodes_from(H)

添加边

G.add_edges_from(edags) #添加边
# 若数据含有权重,及 get_matrix_triad() 中 data = True ,则使用
G.add_weighted_edges_from(edags)

绘图

colors = np.arange(Matrix.shape[0])
nx.draw(G,pos=nx.spring_layout(G),node_color=colors)
plt.show()

效果图

扩展

美化图

合理使用**draw_networkx ()**中的参数,来美化图

draw_networkx() 

https://networkx.github.io/documentation/stable/reference/generated/networkx.drawing.nx_pylab.draw_networkx.html#networkx.drawing.nx_pylab.draw_networkx

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

图邻接矩阵可视化解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录