我的编程空间,编程开发者的网络收藏夹
学习永远不晚

如何进行大数据发展趋势和Spark的分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

如何进行大数据发展趋势和Spark的分析

本篇文章为大家展示了如何进行大数据发展趋势和Spark的分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。

大数据发展趋势和Spark介绍

大数据是随着计算机技术、通信技术、互联网技术的发展而产生的一种现象。

以前我们没有实现人和人之间的连接,产生的数据没有现在这么多;或者说没有把产生的数据记录下来;即使记录下来,我们也没有很好的工具对这些数据进行处理、分析和挖掘。而随着大数据技术的发展,我们开始逐渐地拥有这种能力,来发掘数据中的价值。

大数据技术在2012年之前是以MapReduce为代表的批处理技术;2013年之后,则是以Spark为代表的大数据处理引擎;展望未来,大家越来越关注人工智能和大数据的结合,希望通过人工智能技术从大数据中挖掘更多的价值。近年来人工智能的爆发,也正是得益于大数据技术在存储、算力和算法上的飞速发展,所以人工智能和大数据是密不可分的,离开大数据,人工智能也是无源之水,无木之本。我们可以打个比方,如果把人工智能比喻成火箭,那么大数据技术就是推动这艘火箭的燃料。

以上我们从宏观的角度来看大数据技术的发展趋势,下面让我们以一个技术人员的角度,来看看当前大多数企业中所使用的大数据平台的系统架构。

首先企业会从各个渠道收集数据,这些数据通过消息订阅系统,一部分会经过一些流失的计算和处理,支持在线和实时的分析;另一部分数据则进入到相对静态的数据湖中,中间会涉及到数据的清洗、过滤、再加工等操作,另外还可以对数据进行结构调整来优化业务,如合并大量小文件等等。数据湖中这些数据可以用来支持商业分析报表、数据挖掘、人工智能等应用。事实上Spark是当前使用最普遍的大数据计算引擎。在各个大企业的业务系统中,都把Spark作为数据处理和分析的核心组件。简单来说,原始的数据通常需要利用Spark来进行一系列的处理,才能最终应用于人工智能等应用,可以说Spark已经成为大数据处理领域的一个实施标准。所以在当前大数据+AI的时代,正是因为有了像Spark这样的大数据技术,才使得企业能够更快、更好地搭建业务系统,服务于所需的应用,从而充分的结合大数据和AI的能力,进一步发掘数据中的价值。

接下来让我们一起了解一下Spark。

作为大数据技术中的明星,Spark它是一种通用的高性能的集群计算系统。它起源于UC Berkeley AMP Lab一个研究项目,于2010年开源,2013年加入Apache基金会,如今Spark个在全球已经拥有50万的Meetup成员,Spark的开源社区有1300+开发者,Spark也被广泛的使用于企业和高校中。

那么究竟是什么让Spark能得到大家的青睐呢?第一点原因就是它的高性能,比传统MapReduce要快一百倍以上,让Spark这个项目在一开始就非常的引人注目。其次,是它的通用性,Spark让你可以在一个Pipline里面编写SQL、Streaming、ML、Graph等多种应用,而在Spark号之前是没有一个系统能够做到这一点的。第三点,Spark支持Java、Scala、Python、R、SQL等多种API,而且设计得非常简洁易用。不光如此,Spark还在其周围构建丰富的生态,他能够处理多种数据源,如HBase、Kafka、MySQL等等,以及多种数据格式,如Parquet、ORC、CSV、JSON等等。此外还支持多种模式的部署,Yarn、Mesos、Kubernetes(也简称为K8S),另外Spark也提供独立的Standalone部署模式。

上述内容就是如何进行大数据发展趋势和Spark的分析,你们学到知识或技能了吗?如果还想学到更多技能或者丰富自己的知识储备,欢迎关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

如何进行大数据发展趋势和Spark的分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何进行大数据发展趋势和Spark的分析

本篇文章为大家展示了如何进行大数据发展趋势和Spark的分析,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。大数据发展趋势和Spark介绍大数据是随着计算机技术、通信技术、互联网技术的发展而产生的一种
2023-06-02

如何利用 java quarter 进行数据趋势分析?(java quarter如何进行数据趋势分析)

在当今的数据驱动时代,数据趋势分析对于企业和开发者来说变得越来越重要。JavaQuarter作为一种常用的编程语言和工具,提供了丰富的功能和库,可用于有效地进行数据趋势分析。本文将介绍如何使用JavaQuarter进行数据趋势分析的步骤和技巧。一、数据
如何利用 java quarter 进行数据趋势分析?(java quarter如何进行数据趋势分析)
Java2024-12-19

促进企业业务繁荣发展的十大数据分析趋势

企业领导者需要了解数据分析的行业趋势,以预测客户需求、提供个性化服务,以及实现业务目标。

2021年行业大数据市场现状及发展趋势分析

随着社会的进步和信息通信技术的发展,大数据被广泛应用在各行业、各领域。大数据的广泛应用也意味着数据存储量越来越大,因而,近年来数据存储量呈爆发式增长。在大数据行业的快速增长过程中,中美两国以先进的技术优势占据行业重要地位。未来大数据行业在经
大数据2024-12-02

java未来趋势 Java促进大数据的大发展

没有Java,甚至不会有大数据的大发展,Hadoop本身就是用Java编写的。当你需要在运行MapReduce的服务器集群上发布新功能时,你需要进行动态的部署,而这正是Java所擅长的。大数据领域支持Java的主流开源工具:1. HDFSH
2023-06-03

将让业务繁荣发展的十大数据分析趋势

通过使用先进的分析和技术,企业可以轻松预测客户需求、个性化内容、提高收入并实现目标。企业正在采用分析和系统统计推理来做出提高效率、风险管理和利润的决策,同时保持库存、定价解决方案以及招聘人才。

如何在Prometheus中展示历史数据和趋势分析

要在Prometheus中展示历史数据和趋势分析,可以通过Prometheus提供的查询语言PromQL来实现。以下是一些步骤可以帮助您展示历史数据和趋势分析:使用PromQL查询历史数据:您可以使用PromQL查询语言来检索历史数据。例如
如何在Prometheus中展示历史数据和趋势分析
2024-03-04

2021年大数据和分析的四大趋势

大数据是一个术语,它被用来描述处理数据的技术和实践,这些数据不仅数量大,速度快,而且有许多不同的形式。

Gartner发布2023年十大数据和分析趋势

Gartner近日公布了2023年十大数据和分析(D&A)趋势。

如何在SQL Server中利用Apache Spark进行大数据分析

在SQL Server中利用Apache Spark进行大数据分析可以通过以下步骤实现:安装Apache Spark和Hadoop集群:首先在SQL Server上安装Apache Spark和Hadoop集群。可以使用HDInsight或
如何在SQL Server中利用Apache Spark进行大数据分析
2024-06-03

2022年大数据分析的十大趋势和预测

大数据分析如今成为政府部门和私营企业以及医疗机构抗击新冠疫情的重要资源。这在很大程度上要归功于云计算软件的发展,很多企业现在可以实时跟踪和分析大量业务数据,并相应地对其业务流程进行必要的调整。

从技术视角看大数据行业的发展趋势

正所谓 “抬头看天,低头走路”,大数据从业者既要脚踏实地立足当前技术栈做出高效易用的大数据产品,又要仰望星空顺应大数据的发展趋势,做出有技术前瞻性能适应未来变化的大数据产品。

Gartner公司揭示数据和分析领域的10个发展趋势

调研机构Gartner公司日前揭示了数据和分析领域的十个发展趋势,这些趋势将帮助该领域的领导者有效应对疫情对业务带来的不利影响。

2023年有哪些数据分析和商业智能发展趋势?

在2023年,边缘计算将带来这些商业利益:更多的实时分析、加速分析和更大的大数据分析。企业BI正逐步向收入中心转型。在2023年,如果你发现至少三分之一的大公司正在将BI作为一种服务进行实践,不要感到惊讶。最后,自然语言处理在跟踪竞争市场情

如何进行大数据平台的搭建和数据分析

如何进行大数据平台的搭建和数据分析,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。  行内人士皆知,大数据分析平台的搭建有利于帮助企业构建统一的数据存储和数据处理
2023-06-02

如何用Python进行大数据挖掘和分析

今天就跟大家聊聊有关如何用Python进行大数据挖掘和分析,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。大数据无处不在。在时下这个年代,不管你喜欢与否,在运营一个成功的商业的过程中都
2023-06-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录