我的编程空间,编程开发者的网络收藏夹
学习永远不晚

sql索引优化思路

短信预约 信息系统项目管理师 报名、考试、查分时间动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

sql索引优化思路

sql索引优化思路

【开发】SQL优化思路(以oracle为例)

powered by wanglifeng https://www.cnblogs.com/wanglifeng717

单表查询的优化思路

单表查询是最简单也是最重要的模块,它是多表等查询的基础。

避免对数据重复扫描

能一次扫描拿到的数据,不要重复扫描,查一次库能解决的问题,最好不要多次查。数据的读取非常消耗资源,减少对数据块的扫描。

例如:

SELECT COUNT (*)

FROM employees

WHERE salary < 2000;

SELECT COUNT (*)

FROM employees

WHERE salary BETWEEN 2000 AND 4000;

SELECT COUNT (*)

FROM employees

WHERE salary>4000;

统计任务经常用的语句。其实每个语句基本都把全表或索引扫了一遍,既然要全扫,就把握机会,能一次搞定的就一次搞定。

改写成

SELECT COUNT (CASE WHEN salary < 2000 THEN 1 ELSE null END) count1,COUNT (CASE WHEN salary BETWEEN 2001 AND 4000 THEN 1 ELSE null END) count2,COUNT (CASE WHEN salary > 4000 THEN 1 ELSE null END) count3 FROM employees;

严格来说,我们不推荐写过度复杂“炫技”的SQL,不要生搬硬套示例,只是为了让大家有个“节省持家”的意识。

例如如下经典写法,通过object_id字段上的索引全扫一遍,拿到了多种类别信息,不要分三次查询。

select max(object_id),min(object_id),sum(object_id),avg(object_id),count(object_id) from t where object_id is not null;



从大表中获取少量数据

从大选小,索引是你的不二选择。

例如:select t.name,t.status from t where t.pay_order_id = 101803309910017574;

索引利用B+树的原理可以快速找到某条数据,所以如果你想在大表中找到某条数据,索引是你必须要使用的技术。如上例所示,通过在pay_order_id上索引快速锁定这条数据的rowid,通过回表找到其他字段 t.name,t.status。这条语句就可以迅速执行,即使是千万级别表。原因还是全表扫描读的块非常多,而索引锁定数据快,读的块非常少,所以时间很快。

如果表记录数很少,使用索引效率反而低。例如,只有几十条记录,所有数据在一个

block 内。则全表扫描只需 1 个 block 的 io,而索引读由于回表等可能需要几个 block。

从大表中获取部分数据

例如:select t.name,t.status from t where t.pay_order_id < 101803309910017574;

上例所示,执行计划可能是全表扫描,也可能走索引。

主要决定因素之一是oracle的代价计算(cost),如果数据量比较大,走索引读,每条数据都伴随着一次回表操作。而全表扫描可以一次读多个块进内存。两种方式相比之下,哪条路径的代价低,oracle就会选择哪条。

所以,全表扫描的速度不一定慢。如果上述的SQL没有满足你的性能需求,且需求不能变,导致SQL已经不能修改时,我们可以考虑能否消除索引的回表操作。无论表多大,结果集多大,一旦所要的数据在索引块中都能找到,就不需要回表。因为索引全扫的块肯定比全表扫的块少的多的多,oracle肯定走索引全扫。

例如:

create index t_union_uuid_order_id on t(pay_order_id,uuid);

select uuid,pay_order_id from t where t.pay_order_id<101803300910017574;

如上例所示,所要字段数据在组合索引块中都能找到,所以没有回表操作。而索引块的数量远远小于全表数据的块数量,即使索引全扫,性能也非常好。

绝大多数情况下,这条select t.name,t.status from t where t.pay_order_id < 101809910017574语句我们可以控制下结果集,让索引即使回表,代价也远低于全表扫描。

组合索引不推荐三个及以上的字段建立组合索引,如果需要的字段非常多,不方便建立组合索引,建议控制结果集,少量快速多次,索引或两字段组合索引,多手段结合使用。具体使用要具体问题具体分析。宗旨就是控制结果集,使得走索引的代价低于全表扫描,然后利用索引快速,读块少的优点提高效率。这样分批几次拿数据,可能速度比一次全拿还快。事实是结果集控制的好,往往全表扫描的效率都能满足需求,更何况是索引扫描。



从大表中获取大量数据

这种场景首先要反问的就是这个需求是否存在问题,是否真的适合用关系型数据库?如果确实有这种需求。大表的数据量往往是惊人的,只能分页去拿。而ORACLE的三层select分页会越分越慢。

SELECT *

FROM (SELECT TA.*, ROWNUM ROW_NUM

FROM (select UUID, pay_order_id

from t

order by pay_order_id) TA

WHERE ROWNUM <= 100)

WHERE ROW_NUM > 0;

主要矛盾就是内层的WHERE ROWNUM <= 100,随着页数增加,结果集越来越大。2.order by的排序非常耗费性能,尤其大结果集的排序。3. 外层的WHERE ROW_NUM > 0随着页数越来越大,需要过滤的结果集也越来越大。

推荐方式:

SELECT t.*

FROM (select uuid, pay_order_id

from t

where t.pay_order_id is not null【*注】如果没有非空约束必须显示标明,否则索引失效

and t.pay_order_id >= "101809020001428452"

order by t.pay_order_id) t

WHERE ROWNUM <= 100;

pay_order_id 字段的需求是只增不减,为了不重不漏必须排序。索引是有序的,我们想用索引抵消掉排序,所以要查看执行计划,必须要走到索引。WHERE ROWNUM <= 100在oracle优化中会被推到内层语句中。所以实际结果集是t.pay_order_id >= "101809020001428452"之后的100条数据。所以结果集控制住了,索引代价肯定低于全表扫描,肯定走索引,索引又抵消了排序,同时 WHERE ROWNUM <= 100;每页都是100,rownum的性能损耗也控制住了。

这样额外的代价是,程序每次要记住最后一条pay_order_id,下次分页的时候将其带入。

推广到其他应用则可以选择表中的create_time字段代替pay_order_id。



多表查询的优化思路

多表连接把握住连接方式

多表查询和单表查询,唯一不同的就是把握住连接方式,只要连接方式把握住,多表查询其实就是多次单表查询。

三种连接方式:

nested loops join拿驱动表的结果集,去连接另外一个表,类似于两重嵌套循环(典型使用:小表驱动大表)。

hash join 拿驱动表的结果集去做hash表,PGA区,结果集大了,会到磁盘里。

merge join 无驱动表的概念,较少用到,对于连接键有序。


powered by wanglifeng https://www.cnblogs.com/wanglifeng717


从原理图可以看出,循环嵌套连接和hash连接中驱动表非常关键,准确说驱动表的结果集非常关键。循环嵌套连接的结果集大了,双层循环非常低效,哈希连接结果集大了可能导致排序开销变大,PGA区放不下等问题。

驱动表是oracle自动选择的,默认是加了过滤条件后,结果集小的那个表。如果查看执行计划,驱动表不如你所愿,你需要检查结果集是否相比另一个表结果集来说,明显是小结果集。或者自动收集信息不准确,需要更新。

如果是多表连接查询少量数据,推荐走循环嵌套连接。

create index n_index_order_id on n(order_id);

create index t_index_query_id on t(query_id);

select t.id ,t.name,n.address from n, t where t.pay_order_id=n.order_id and t.query_id="261801163544557068";

在驱动表的过滤条件上建立索引,快速锁定需要的少量数据行,在被驱动表的连接字段上建立索引,方便连接条件迅速匹配。这样的配合,就算两个表都是千万级别的表,只要索引不失效,速度都非常快。

如果是多表连接要查询出一部分数据,推荐走哈希连接

首先过滤条件过滤出小结果集,小结果集是个相对的概念,有时1000条算小结果集,有时10条也算大结果集,这里的小结果集一般在百条量级。

哈希连接的特点就是,无论驱动表的结果集在一定范围内如何变化,理论上,一次查询的时间近似等于扫一遍被驱动表的时间。性能表现相当高效和稳定。

控制驱动表的结果集,在被驱动表的连接字段上建立索引,忽略回表等细节,确认走到索引,这样一次查询的时间近似等于被驱动表的索引全扫时间,而我们知道,索引块相对全表块是非常少的,索引全扫非常高效。

走哪种连接方式,是oracle自动选择的,oracle选择的规则就是基于上述原理,所以我们决定不了走哪种执行计划,但是我们能让oracle”不得不走”哪种执行计划。



控制住结果集

控制结果集,不仅体现在单表查询的索引选择问题,还有体现在多表查询的连接方式和效率上。

除此之外还存在很多误区。结果集的概念并不是简单的数据量,而是一种意识,有控制结果集的意识,而不是教条主义的定义多少数量算大结果集。

结果集经典示例:

把in换成exists就完事了,性能就优化了,这是常犯的误区。

in是判断一个值是否在某个列中,而exists是判断一个值是否存在

Select * from tab where id in ( select id from tabel );

In 是先产生子查询结果集,然后主查询区结果集中寻找符合要求的字段列表,符合要求的输出。

Exists不返回列表值,而是true或者false,运行方式为,先运行主查询一次,在去子查询中查询与之对应的结果,如果子查询返回true则输出,反之不输出,在根据主查询的每一行去子查询中查询。

从原理可以看出,如果in的子查询结果集很大,外层的结果集也很大,相当于两个大结果集在连接运算,很耗性能。

Exists的运算比in优化了,但是就是搜索内层子查询的时候优化了,但是关键点是要把握住内外层的结果集,如果结果集很大,exists同样很慢,结果集控制的好,in操作也能符合要求。

总结:不管你多有把握,请一定要看下执行计划,一定要看下执行计划,一定要看下执行计划。。。。


本文来自云海天,作者:wanglifeng,转载请注明原文链接:https://www.cnblogs.com/wanglifeng717/p/15847101.html

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

sql索引优化思路

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

sql索引优化思路

【开发】SQL优化思路(以oracle为例)powered by wanglifeng https://www.cnblogs.com/wanglifeng717单表查询的优化思路单表查询是最简单也是最重要的模块,它是多表等查询的基础。避免对数据重复扫描能一次
sql索引优化思路
2020-02-17

SQL索引(索引优化)

#1.最左前缀匹配原则,非常重要的原则, create index ix_name_email on s1(name,email,) - 最左前缀匹配:必须按照从左到右的顺序匹配 select * from s1 where name="egon"; #可以
SQL索引(索引优化)
2021-11-01

索引在Oracle处理复杂查询中的优化思路

在Oracle中,针对复杂查询的优化思路主要包括以下几个方面:创建合适的索引:在进行复杂查询时,首先需要考虑是否已经为查询涉及的列创建了合适的索引。索引可以加快查询的速度,特别是在涉及到大量数据的情况下。需要注意的是,索引的创建应该基于查询
索引在Oracle处理复杂查询中的优化思路
2024-08-15

Oracle 建立索引及SQL优化

数据库索引:索引有单列索引复合索引之说如何某表的某个字段有主键约束和唯一性约束,则Oracle 则会自动在相应的约束列上建议唯一索引。数据库索引主要进行提高访问速度。建设原则: 1、索引应该经常建在Where 子句经常用到的列上。如果某个大表经常使用某个字段进
Oracle 建立索引及SQL优化
2015-01-04

SQL级别索引优化技巧

确保表中的列都有适当的索引:在查询中经常使用的列应该创建索引,这样可以加快查询速度。考虑使用复合索引:当查询中涉及多个列时,可以考虑创建复合索引来提高性能。避免在索引列上进行函数操作:在查询中避免对索引列进行函数操作,这样会导致索引失效,降
SQL级别索引优化技巧
2024-08-04

SQL Server索引优化常用查询

1.1、查找缺失索引SELECT A.USER_SEEKS 查找次数,A.USER_SCANS 扫描次数, ROUND(A.AVG_TOTAL_USER_COST,2) 减少的用户查询的平均成本,A.AVG_USER_IMPACT 可能获得的平均百分比收
SQL Server索引优化常用查询
2014-10-16

MySQL慢sql优化思路详细讲解

目录1、开启mysql慢查询1.1、查看慢查询相关配置1.2、查询慢查询sql耗时临界点1.3、开启Mysql慢查询2、explain查看SQL执行计划2.1、Select_type2.2、Type2.3、Possible_keys2.4、
2023-01-05

Mysql优化思路

一、总体优化思路    首先构建脚本观察查询数,连接数等数据,确定环境原因以及内部SQL执行原因,然后根据具体原因做具体处理。二、构建脚本观察状态mysqladmin -uroot -p ext G 该命令可获取当前查询数量等信息,定时轮询并将结果重定向到文
Mysql优化思路
2016-01-13

MySql索引原理和SQL优化方式

目录一、索引与约束1、索引是什么2、索引的分类列的属性-索引约束数据结构索引实现-物理存储3、使用索引的场景二、索引方式1、聚集索引2、辅助索引(二级索引)3、覆盖索引4、最左匹配规则5、索引下推三、索引的失效和原则1、索引失效2、索引原则
MySql索引原理和SQL优化方式
2024-09-24

SQL Server高级进阶之索引优化

1.1、查找缺失索引SELECT A.USER_SEEKS 查找次数,A.USER_SCANS 扫描次数, ROUND(A.AVG_TOTAL_USER_COST,2) 减少的用户查询的平均成本,A.AVG_USER_IMPACT 可能获得的平均百分比收
SQL Server高级进阶之索引优化
2016-07-26

MySQL索引优化

一、单表创建索引之前:type=ALL全表扫描,Extra里面的Using filesort(文件内部排序)根据where后面的条件创建:CREATE INDEX idx_article_ccv ON article(category_id,comments,
MySQL索引优化
2019-01-06

SQL Server索引优化的方法是什么

这篇“SQL Server索引优化的方法是什么”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“SQL Server索引优化的方
2023-06-27

编程热搜

目录