我的编程空间,编程开发者的网络收藏夹
学习永远不晚

matplotlib如何实现一维散点分布图

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

matplotlib如何实现一维散点分布图

这篇“matplotlib如何实现一维散点分布图”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“matplotlib如何实现一维散点分布图”文章吧。

引言

本次的目标是绘制数据的一维散点分布图,应用场景是数据一维标签的聚类可视化,假定我们拥有原始的带标签数据 ( X , y ) (X,y) (X,y)其中 X X X为样本特征矩阵, y y y为对应样本的标签(连续值),通过聚类算法得到了 X X X的伪分类标签 y ^ , y ^ ∈ ( 1 , 2 , . . . , N ) \hat{y}, \hat{y}\in(1,2,...,N) y^,y^∈(1,2,...,N),想要绘制出相同类别样本在标签值是否同样是集中的。
值得注意的是,由于我们可能获得多类样本,因此仅仅使用一张图来进行绘制可能会使得不同类别样本的marker在图上相互重叠,因此需要为每一类样本单独绘制一维散点分布图,并在同一张画布上显示。

方法

为了显示一维的单张散点分布图,我们需要对matplotlib默认的二维画布进行调整,将其余三条轴线都设置为不可见,只保留底部的轴线,进一步的,要把纵轴label的位置向图左端移动(否则在横轴包括负半轴时,label会出现在图中央),实例代码如下:

axs.spines['top'].set_visible(False)axs.spines['right'].set_visible(False)axs.spines['left'].set_visible(False)axs.yaxis.set_ticks_position('left')axs.set_xlim((-0.05,1.05))axs.set_ylim((0,1))axs.set_yticks([0],labels=['score'])

对于多张一维散点图的绘制,只需要利用subplot函数,对子图重复进行上述操作即可。整体代码如下:

def score_distr(group,x_lim=(-0.1,1.1),y_lim=(-0.1,1.1)):    '''    可视化N个类别中每个样本的y分布    :param group: List[np.ndarray], N类样本标签y组成的数组    :param x_lim: 横坐标区间    :param y_lim: 纵坐标区间    :return:    '''    group_num=len(group)    color_map=["violet","tomato","cyan","salmon","limegreen"]    fig,axs=plt.subplots(group_num,1)    dem_labels=[]    for i in range(group_num):        axs[i].scatter(group[i],[0.05]*group[i].shape[0],label="class_"+str(i),c=color_map[i])        # axs[i].xlim(x_lim)        dem_labels.append("class_"+str(i))        axs[i].spines['top'].set_visible(False)        axs[i].spines['right'].set_visible(False)        axs[i].spines['left'].set_visible(False)        axs[i].yaxis.set_ticks_position('left')        axs[i].set_xlim(x_lim)        axs[i].set_ylim(y_lim)        axs[i].set_yticks([0],labels=['score'])    fig.legend(dem_labels,loc=(0.45,0.85))

测试结果

给出示例代码及对应结果如下:

test=[]for i in range(3):    test.append(np.random.rand(15))score_distr(test,x_lim=(-1.05,1.05))

结果:

matplotlib如何实现一维散点分布图

以上就是关于“matplotlib如何实现一维散点分布图”这篇文章的内容,相信大家都有了一定的了解,希望小编分享的内容对大家有帮助,若想了解更多相关的知识内容,请关注编程网行业资讯频道。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

matplotlib如何实现一维散点分布图

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

matplotlib如何实现一维散点分布图

这篇“matplotlib如何实现一维散点分布图”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“matplotlib如何实现一
2023-07-05

matplotlib一维散点分布图的实现

本文主要介绍了matplotlib一维散点分布图的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-03-10

matplotlib如何实现自定义散点形状marker

这篇文章给大家分享的是有关matplotlib如何实现自定义散点形状marker的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。无填充形状和填充形状使用这种形状只需给marker指定一个字符或者一个数字即可Tex形
2023-06-25

如何使用R语言绘制散点图结合边际分布图

这篇文章主要为大家展示了“如何使用R语言绘制散点图结合边际分布图”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“如何使用R语言绘制散点图结合边际分布图”这篇文章吧。主要使用ggExtra结合ggp
2023-06-25

Vue导入Echarts如何实现折线散点图

这篇文章主要介绍了Vue导入Echarts如何实现折线散点图,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。效果图:一、vue-cli中导入echarts通过命令:npm in
2023-06-25

分布式 | DBLE 是如何实现视图的?

作者:苏仕祥浩鲸科技 PaaS 组件团队成员,长期从事分库分表中间件的相关解决方案工作,热爱技术,乐于分享。本文来源:原创投稿*爱可生开源社区出品,原创内容未经授权不得随意使用,转载请联系小编并注明来源。本文主要讲解 DBLE 是如何实现 MySQL 视图功能
分布式 | DBLE 是如何实现视图的?
2014-11-17

Redis如何实现分布式缓存一致性

Redis如何实现分布式缓存一致性,需要具体代码示例缓存是提高系统性能的重要手段之一,而分布式缓存则能够进一步提升系统的并发能力和扩展性。Redis作为一种常用的内存数据库,具有快速、高效的特点,广泛被用于分布式缓存的实现。在分布式缓存中,
Redis如何实现分布式缓存一致性
2023-11-07

Redis如何实现分布式事务的一致性

Redis是一个高性能、分布式内存数据库,被广泛应用在分布式系统中。在分布式系统中,如何实现事务的一致性一直是一个难题,而Redis提供的事务机制可以帮助开发者解决这个问题。本文将介绍Redis如何实现分布式事务的一致性,并展示代码示例。一
Redis如何实现分布式事务的一致性
2023-11-07

如何使用Redis实现分布式数据一致性

如何使用Redis实现分布式数据一致性引言:随着互联网的快速发展,分布式系统已成为许多企业的首选架构。在分布式系统中,数据的一致性是非常关键的。Redis作为一种高性能、可扩展的键值存储系统,被广泛应用于分布式系统中,下面将介绍如何使用Re
如何使用Redis实现分布式数据一致性
2023-11-07

PyTorch如何实现一个简单的CNN图像分类器

这篇文章给大家分享的是有关PyTorch如何实现一个简单的CNN图像分类器的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。一. 加载数据Pytorch的数据加载一般是用torch.utils.data.Datase
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录