我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python系列之图片验证码识别

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python系列之图片验证码识别

Python系列之图片验证码识别

引言

图片验证码已经成为现代网络应用中常见的一种身份验证形式。本文将介绍如何使用 Python 进行图片验证码的识别。我们将使用基于机器学习的方法,通过训练模型来自动识别验证码图片。

步骤

1. 数据收集

首先,我们需要收集用于训练和测试的验证码图片数据。可以通过各种方式获取这些数据,如自己编写脚本从网站上下载验证码图片,或者使用第三方库进行爬取等。确保收集到的数据包括不同类型的验证码图片,并且涵盖了不同的字体、颜色和干扰线等元素。

2. 数据预处理

在对验证码图片进行训练之前,我们需要对其进行预处理以提高识别准确性。预处理步骤可能包括:

  • 图片灰度化:将彩色图片转换为灰度图像,简化后续处理步骤。
  • 图片二值化:将灰度图像转换为二值图像,提高字符边缘的清晰度。
  • 图像去噪:通过滤波等方法去除可能干扰识别的噪声。

在 Python 中,我们可以使用 OpenCV 和 PIL 等库来进行这些预处理操作。以下是一个简单的代码示例:

import cv2from PIL import Imagedef preprocess_image(image_path):    # 读取图片并灰度化    image = cv2.imread(image_path)    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)        # 图片二值化    _, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)        # 图像去噪    denoised = cv2.medianBlur(binary, 3)        return denoisedimage_path = 'captcha.png'preprocessed_image = preprocess_image(image_path)

3. 特征提取

在将图片送入机器学习模型之前,我们需要从中提取出有用的特征。在验证码识别中,常见的特征包括字符的形状、连通性和轮廓等信息。

为了提取这些特征,我们可以使用图像处理库中的函数,如 findContours() 和 moments(),或者使用基于机器学习的特征提取算法,如卷积神经网络(CNN)。

以下是一个示例代码段,演示了如何提取字符的轮廓:

import cv2def extract_features(image):    contours, _ = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)    features = []    for contour in contours:        # 计算轮廓的矩        moments = cv2.moments(contour)                # 提取特征并添加到列表中        features.append(moments['m00'])        return featuresfeatures = extract_features(preprocessed_image)

4. 模型训练和测试

在完成数据预处理和特征提取后,我们可以使用机器学习算法来训练模型。常见的算法包括支持向量机(SVM)、随机森林(Random Forest)和深度学习模型等。

在这里,我们将使用一个简单的 SVM 分类器作为示例。首先,我们需要准备标记好的训练数据集,其中包含了验证码图片和对应的标签。然后,我们用这些数据进行训练,并评估模型的性能。

以下是一个基于 Scikit-learn 库的 SVM 分类器的示例代码:

from sklearn import svmfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import accuracy_score# 准备训练数据集(假设我们有已标记好的数据集 X 和相应的标签 y)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)# 创建 SVM 分类器并拟合训练数据classifier = svm.SVC()classifier.fit(X_train, y_train)# 在测试集上进行预测并计算准确率predictions = classifier.predict(X_test)accuracy = accuracy_score(y_test, predictions)

5. 应用部署

完成模型训练和测试后,我们可以将模型应用到实际的验证码识别场景中。通过读取待识别的验证码图片,并使用之前训练好的模型进行预测,即可实现自动识别。

以下是一个简单的代码示例:

# 读取待识别的验证码图片并进行预处理captcha_image = preprocess_image('captcha.png')# 提取特征features = extract_features(captcha_image)# 使用训练好的模型进行预测prediction = classifier.predict([features])print(f"验证码识别结果: {prediction}")

6. 其他方式说明

以上是常规的模式,还可以引入一些三方api识别的形式以及github上一些比较完整的库,这里就不做推荐了。

结论

本文介绍了使用 Python 进行图片验证码识别的详细步骤。从数据收集、预处理、特征提取、模型训练到最终应用,每个步骤都包含了相应的解释和示例代码。希望这篇博客能对你理解和实践验证码识别技术有所帮助。

来源地址:https://blog.csdn.net/qq_41287993/article/details/131455348

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python系列之图片验证码识别

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python+Selenium+Pytesseract怎么实现图片验证码识别

这篇文章给大家介绍Python+Selenium+Pytesseract怎么实现图片验证码识别,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。一、selenium截取验证码import jsonfrom io impor
2023-06-26

python入门教程之识别验证码

前言 验证码?我也能破解?关于验证码的介绍就不多说了,各种各样的验证码在人们生活中时不时就会冒出来,身为学生日常接触最多的就是教务处系统的验证码了,比如如下的验证码:识别办法模拟登陆有着复杂的步骤,在这里咱们不管其他操作,只负责根据输入的一
2022-06-04

Python怎么实现图形验证码识别

这篇文章主要介绍了Python怎么实现图形验证码识别的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Python怎么实现图形验证码识别文章都会有所收获,下面我们一起来看看吧。环境使用python 3.9pycha
2023-07-05

详解Python验证码识别

以前写过一个刷校内网的人气的工具,Java的(以后再也不行Java程序了),里面用到了验证码识别,那段代码不是我自己写的:-) 校内的验证是完全单色没有任何干挠的验证码,识别起来比较容易,不过从那段代码中可以看到基本的验证码识别方式。这几天
2022-06-04

python ocr简单示例之识别验证码

OCR(Opticalcharacterrecognition,光学字符识别)是一种将图像中的手写字或者印刷文本转换为机器编码文本的技术,下面这篇文章主要给大家介绍了关于python ocr简单示例之识别验证码的相关资料,需要的朋友可以参考下
2023-01-16

Python网站验证码识别

0x00 识别涉及技术 验证码识别涉及很多方面的内容。入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足。 验证码图像处理 验证码图像识别技术主要是操作图片内的像素点,通过对图片的像素点进行一系列的操作,最后输出验证码图像
2022-06-04

Python实现图片滑动式验证识别方法

1 abstract 验证码作为一种自然人的机器人的判别工具,被广泛的用于各种防止程序做自动化的场景中。传统的字符型验证安全性已经名存实亡的情况下,各种新型的验证码如雨后春笋般涌现。目前最常见的一种形式就是“滑动拼图式” 2 内容概述 关于
2022-06-04

python 验证码识别库pytesse

笔者环境 centos7 python3pytesseract只是tesseract-ocr的一种实现接口。所以要先安装tesseract-ocr(大名鼎鼎的开源的OCR识别引擎)。 依赖安装yum install-y automake a
2023-01-30

python简单验证码识别

在学习python通过接口自动登录网站时,用户名密码、cookies、headers都好解决但是在碰到验证码这个时就有点棘手了;于是通过网上看贴,看官网完成了对简单验证码的识别,如果是复杂的请看大神的贴这里解决不了; 以上两张为网站的上比
2023-01-31

Python中怎么使用ddddocr库识别图片与滑块验证码

这篇“Python中怎么使用ddddocr库识别图片与滑块验证码”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python中
2023-07-05

python图片验证码生成代码

本文实例为大家分享了python图片验证码实现代码,供大家参考,具体内容如下#!/usr/bin/env python # -*- coding: UTF-8 -*-import random from PIL import Image,
2022-06-04

如何使用Python实现极验验证码识别验证码

这篇“如何使用Python实现极验验证码识别验证码”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“如何使用Python实现极验
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录