我的编程空间,编程开发者的网络收藏夹
学习永远不晚

关于生产消费者模型中task_done()的具体作用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

关于生产消费者模型中task_done()的具体作用

直奔主题

tase_done()的作用:

只有消费者把队列所有的数据处理完毕,queue.join()才会停止阻塞

代码解释

#关于tase_done()的作用:只有消费者把队列所有的数据处理完毕,queue.join()才会停止阻塞
import time
from queue import Queue
from threading import Thread
q = Queue()

def produce():
    for i in range(10):
        q.put(i)
        print('生产:',i)
    print('生产任务完毕!')
    q.join()
    print(produce.__name__,'函数结束!')

def consumer():
    for i in range(10):
        print('消费:', q.get())
        q.task_done()
        # if i == 4:
        #     print('休息1s...')
        #     time.sleep(1)#sleep作用:查看生产者是否阻塞
    print(consumer.__name__,'函数结束!')



pro = Thread(target=produce)
con = Thread(target=consumer)

pro.start()
con.start()

con.join()
print('消费者任务完成')
pro.join()
print('生产者任务完成')

生产: 0
生产: 1
生产: 2
生产: 3
生产: 4
生产: 5
消费: 0
消费: 1
消费: 2
消费: 3
消费: 4
消费: 5
生产: 6
生产: 7
生产:8
消费: 6
消费: 7
消费: 8
生产: 9
生产任务完毕!
消费: 9
consumer 函数结束!
produce 函数结束!
消费者任务完成
生产者任务完成

说明:生产任务已经完毕为什么没有直接produce函数结束?

说明这里产生了阻塞,产生阻塞的原因是因为消费者没有处理完生产者所有任务。

tase_done()的作用:只有消费者把队列所有的数据处理完毕,queue.join()才会停止阻塞所以才会有produce函数结束!然后生产任务结束。

对比解释看效果

注释掉q.task_done()和q.join()

#关于tase_done()的作用:只有消费者把队列所有的数据处理完毕,queue.join()才会停止阻塞
import time
from queue import Queue
from threading import Thread
q = Queue()

def produce():
    for i in range(10):
        q.put(i)
    print('生产任务完毕!')
    # q.join()
    # if i == 4:
        #     print('休息1s...')
        #     time.sleep(1)#sleep作用:查看生产者是否阻塞
    print(produce.__name__,'函数结束!')

def consumer():
    for i in range(10):
        print('消费:', q.get())
        # q.task_done()
    print(consumer.__name__,'函数结束!')



pro = Thread(target=produce)
con = Thread(target=consumer)

pro.start()
con.start()

con.join()
print('消费者任务完成')
pro.join()
print('生产者任务完成')

生产: 0
生产: 1
生产: 2
生产: 3
生产: 4
生产: 5
生产: 6
生产: 7
生产: 8
生产: 9
消费: 0
消费: 1
生产任务完毕!
produce 函数结束!
消费: 2
消费: 3
消费: 4
消费: 5
消费: 6
消费: 7
消费: 8
消费: 9
consumer 函数结束!
消费者任务完成
生产者任务完成

说明:不带task_done()和join()情况下生产任务结束,produce函数立刻结束,并没有等待消费者处理完所有任务立即结束。

仅注释掉q.task_done()**

#关于tase_done()的作用:只有消费者把队列所有的数据处理完毕,queue.join()才会停止阻塞
import time
from queue import Queue
from threading import Thread
q = Queue()

def produce():
    for i in range(10):
        q.put(i)
    print('生产任务完毕!')
    q.join()
    print(produce.__name__,'函数结束!')

def consumer():
    for i in range(10):
        print('消费:', q.get())
        # q.task_done()
        # if i == 4:
        #     print('休息1s...')
        #     time.sleep(1)#sleep作用:查看生产者是否阻塞
    print(consumer.__name__,'函数结束!')



pro = Thread(target=produce)
con = Thread(target=consumer)

pro.start()
con.start()

con.join()
print('消费者任务完成')
pro.join()
print('生产者任务完成')

生产: 0
生产: 1
生产: 2
生产: 3
生产: 4
生产: 5
生产: 6
生产: 7
生产: 8
生产: 9
生产任务完毕!
消费: 0
消费: 1
消费: 2
消费: 3
消费: 4
消费: 5
消费: 6
消费: 7
消费: 8
消费: 9
consumer 函数结束!
消费者任务完成
。。。阻塞。。。

说明:消费者已经把任务完成了,但是produce函数却一直阻塞没有结束。

总结

通过以上分析可以得出结论:

task_done()的作用:消费者处理一个任务,它就通知生产者我处理了一个任务。

为什么要告诉生产者消费者处理了一个任务呢?

这也是为什么我进行注释对比的原因

  • 1.注释q.task_done(),不注释q.join(),我们发现produce函数一直阻塞没有结束。
  • 2.注释q.task_done(),注释q.join(),我们发现生产者生产完任务produce函数就结束了,而不是等到消费者消费完才结束。这没有task_done和join:这个模型一定是生产者先生产任务,消费者发现有任务就消费(不然会阻塞等待),所以一定是生产者生产完后就马上结束生产而消费者还没有结束。
  • 3.不注释q.task_done(),不注释q.join(),我们发现produce函数在消费者消费完后才结束,而不是生产完就结束。

生产者如果被消费者的task_done()告知没有把生产者交给的任务处理完毕,那么生产者就会一直阻塞(生气…)。

大家可以把sleep()函数的注释删掉看看,并且设置任意一个sleep()时间观察现象。

如果只有q.join()而没有task_done(),消费者处理完所有任务,生产者任然阻塞,所以q.join()一般和q.task_done()配合使用。

最后

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

关于生产消费者模型中task_done()的具体作用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

关于生产消费者模型中task_done()的具体作用

这篇文章主要介绍了关于生产消费者模型中task_done()的具体作用,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-25

生产消费者模型中的task_done()如何作用

这篇文章主要讲解了“生产消费者模型中的task_done()如何作用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“生产消费者模型中的task_done()如何作用”吧!tase_done()
2023-07-05

Python生产者与消费者模型中的优势有哪些

这篇文章主要介绍“Python生产者与消费者模型中的优势有哪些”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python生产者与消费者模型中的优势有哪些”文章能帮助大家解决问题。生产者消费者模型具体
2023-07-05

python多进程中的生产者和消费者模型怎么实现

这篇文章主要介绍了python多进程中的生产者和消费者模型怎么实现的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇python多进程中的生产者和消费者模型怎么实现文章都会有所收获,下面我们一起来看看吧。Pytho
2023-07-05

理解生产者消费者模型及在Python编程中的运用实例

什么是生产者消费者模型 在 工作中,大家可能会碰到这样一种情况:某个模块负责产生数据,这些数据由另一个模块来负责处理(此处的模块是广义的,可以是类、函数、线程、进程等)。产 生数据的模块,就形象地称为生产者;而处理数据的模块,就称为消费者。
2022-06-04

怎么在Python中利用 Asyncio模块实现一个生产消费者模型

本文章向大家介绍怎么在Python中利用 Asyncio模块实现一个生产消费者模型的基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。Python主要用来做什么Python主要应用于:1、Web开发;2、数据科学研究
2023-06-06

Java多线程中不同条件下编写生产消费者模型的示例分析

这篇文章主要为大家展示了“Java多线程中不同条件下编写生产消费者模型的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Java多线程中不同条件下编写生产消费者模型的示例分析”这篇文章吧。
2023-05-30

Python爬虫程序中使用生产者与消费者模式时进程过早退出的问题

本文主要介绍了Python爬虫程序中使用生产者与消费者模式时进程过早退出的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-01-06

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录