我的编程空间,编程开发者的网络收藏夹
学习永远不晚

解决R语言 数据不平衡的问题

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

解决R语言 数据不平衡的问题

R语言解决数据不平衡问题

一、项目环境

开发工具:RStudio

R:3.5.2

相关包:dplyr、ROSE、DMwR

二、什么是数据不平衡?为什么要处理数据不平衡?

首先我们要知道的第一个问题就是“什么是数据不平衡”,从字面意思上进行解释就是数据分布不均匀。在我们做有监督学习的时候,数据中有一个类的比例远大于其他类,或者有一个类的比值远小于其他类时,我们就可以认为这个数据存在数据不平衡问题。

那么这样的一个问题会对我们后续的分析工作带来怎样的影响呢?我举个简单的例子,或许大家就明白了。

假设我们现在需要训练一个模型来分辨人群中那个人是恐怖分子。那么现在给到我们1万个人员的数据,在做分析之前其实我们就很清楚,一群人中恐怖分子的比例肯定是要远小于普通人的比例的。

那么假如在这1万个人中只有一个是恐怖分子,那么恐怖分子与正常人的比例就是 9999 : 1 。

那么如果我们不进行任何处理就直接进行有监督学习的话,那么模型只需要将所有人数据都分类为正常人,模型的准确率就能达到99.99%。而这样的模型显然是没有意义的。

因为基本上说有可能存在的恐怖分子的特征基本都被模型给忽略了,这也就说明了为什么要处理数据不平衡问题。

三、 常见的数据不平衡处理方法

以下是几种比较常见的处理数据不平衡的方法:

1、欠采样法(Undersampling)

2、过采样法(Oversampling)

3、人工数据合成法(Synthetic Data Generation)

4、代价敏感学习法(Cose Sensitive Learning)

【注】:本文主要以实现为主,因此不对上述方法进行过多的讲解。

​ 在处理数据之前,我们先看一下需要处理的数据分布的情况。


load("C:/Users/User/Desktop/data.RData")
table(data$classification)
prop.table(table(data$classification))

> table(data$classification)

-8 1 2 3 4 5

12 104 497 1158 4817 1410

> prop.table(table(data$classification))

-8 1 2 3 4 5

0.001500375 0.013003251 0.062140535 0.144786197 0.602275569 0.176294074

1、 欠采样


######### 方法一 #########
library(ROSE)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 将分类结果转化为因子型(不然会报错)
test$classification <- as.factor(test$classification)
# 进行欠采样
# 其中 method = "under" 表示采用的方法为“欠采样”
# N = 40 表示最终整个数据集的数量
# seed 随机种子,为了保留对样本的追踪
under <- ovun.sample(classification ~ ., test, method = "under", N = 40, seed = 1)$data
# 查看结果
table(under$classification)

> table(under$classification)

4 -8

28 12


######### 方法二 #########
library(dplyr)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 提取大比例类
test1 <- test[which(test$classification == 4),]
# 将大比例类的数量降为12个
down <- sample_n(test1, 12, replace = TRUE)
# 将欠采样后的类进行合并
down <- rbind(test[which(test$classification == -8), ],down)
table(down$classification)

> table(down$classification)

-8 4

12 12

【注】:欠采样是无放回的采样。

2、 过采样


######### 方法一 #########
library(ROSE)
test <- data[which(data$classification == -8 | data$classification == 4),]
test$classification <- as.factor(test$classification)
# 实现上大致与欠采样相同,只有类型 method 改成了 "over",同时没有限制总数量
under <- ovun.sample(classification ~ ., test, method = "over", seed = 1)$data
table(under$classification)

> table(under$classification)

4 -8

4817 4785


######### 方法二 #########
library(dplyr)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 提取小比例类
test1 <- test[which(test$classification == -8),]
# 将小比例类的数量降为4817个(与大比例类相同)
# 这里使用的过采样方法是随机复制小比例类中的数据,将其扩充到指定数量
down <- sample_n(test1, 4817, replace = TRUE)
down <- rbind(test[which(test$classification == 4), ],down)
table(down$classification)

> table(down$classification)

-8 4

4817 4817

3、人工数据合成法(Synthetic Data Generation)


######### 方法一 #########
library(ROSE)
# 由于是多分类问题,我们先提取数据中比例最大的类和比例最小的类
# 进行平衡(转化为二分类问题)
test <- data[which(data$classification == -8 | data$classification == 4),]
# 将分类结果转化为因子型(不然会报错)
test$classification <- as.factor(test$classification)
# ROSE提供了ROSE()函数来合成人工数据
rose <- ROSE(classification ~ ., test, seed = 1)$data
# 查看结果
table(rose$classification)

> table(rose$classification)

4 -8

2483 2346


######### 方法二 #########
library(DMwR)
test <- data[which(data$classification == -8 | data$classification == 4),]
test$classification <- as.factor(test$classification)
# perc.over: 如 perc.over = n,小比例类的个数变为 (n/100)a + a 个数据(a为小比例类原始数量)
# perc.under: 如 perc.under = m,大比例类的个数变为((nm)/100)a个
# 因此本次案例中,小比例类的个数变为(3500/100)*12 + 12 = 432个
# 大比例类的个数变为((3500*300)/100^2)*12 = 1260个
down <- SMOTE(classification ~ ., test, perc.over = 3500, perc.under = 300)
table(down$classification)

> table(down$classification)

-8 4

432 1260

【注】:相较于前两种方法而言,人工合成法既不会像过采样容易导致过拟合问题,也不会出现欠采样大量丢失信息的问题。

4、代价敏感学习法(Cose Sensitive Learning)

【注】:还没想好怎么写。。。。。

三、 结语

本文之所以都只拿两个分类在进行分析,是因为上面提到的用于解决数据不平衡问题的函数,基本上都是针对二分类问题的。当导入的数据中有大于两个分类时,函数就会报错。

但是在实际分析的过程中,其实我们更经常遇到的时多分类问题,这是我们就需要将多分类问题转化为二分类问题,将各个分类两两进行比较才能更好的解决数据不平衡的问题。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

解决R语言 数据不平衡的问题

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

R语言中数据不平衡如何解决

R语言中数据不平衡如何解决?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。一、项目环境开发工具:RStudioR:3.5.2相关包:dplyr、ROSE、DMwR二、什么是数据不
2023-06-15

R语言项目中出现数据不平衡如何解决

这篇文章将为大家详细讲解有关R语言项目中出现数据不平衡如何解决,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。一、项目环境开发工具:RStudioR:3.5.2相关包:dplyr、ROSE、D
2023-06-08

C语言平衡二叉树问题怎么解决

这篇文章主要介绍“C语言平衡二叉树问题怎么解决”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C语言平衡二叉树问题怎么解决”文章能帮助大家解决问题。一、题目描述给定一个二叉树,判断它是否是高度平衡的二
2023-06-30

Python中怎么解决非平衡数据问题

Python中怎么解决非平衡数据问题,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。SMOTE算法的介绍在实际应用中,读者可能会碰到一种比较头疼的问题,那就是分类
2023-06-17

如何解决R语言循环慢的问题

小编给大家分享一下如何解决R语言循环慢的问题,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!什么是R语言R语言是用于统计分析、绘图的语言和操作环境,属于GNU系统的一个自由、免费、源代码开放的软件,它是一个用于统计计算和统计
2023-06-14

centos6.5安装R语言出现问题怎么解决

这篇文章主要讲解了“centos6.5安装R语言出现问题怎么解决”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“centos6.5安装R语言出现问题怎么解决”吧!环境:虚拟机centos6.5
2023-06-03

R语言如何解决处理矩阵遇到内存不足的问题

小编给大家分享一下R语言如何解决处理矩阵遇到内存不足的问题,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!什么是R语言R语言是用于统计分析、绘图的语言和操作环境,属
2023-06-14

R语言如何解决无法打开链结的问题

这篇文章给大家分享的是有关R语言如何解决无法打开链结的问题的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。近期,在项目中遇到一个棘手的问题。R脚本在centos服务器上通过"R --no-save filename
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录