Python中jieba分词模块的用法
这篇文章主要讲解了“Python中jieba分词模块的用法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Python中jieba分词模块的用法”吧!
0、前言
jieba库是进行中文分词的利器,根据文档描述,具有以下特点:
分词
提取关键词
搜索词汇位置
搜索词汇位置
<h5 white-space:normal;widows:1;background-color:#ffffff;box-sizing:border-box="" !important;"="">4、小结
2、提取词汇
在处理词汇时,常常我们会提取出现频率比较高的关键词,jieba.analyse.extract_tags()具有此功能,它接受 4 个参数
jieba 库也包含了定位词汇位置的功能,jieba.tokenize() 可以实现此功能,该函数接收字符串,返回一个生成器,包含所有分词结果以及始末位置,基本用法如下:
import jiebastring = '今天天气特别好,很开心' result = jieba.tokenize(string)print(list(result))
结果如下:
[('今天天气', 0, 4), ('特别', 4, 6), ('好', 6, 7), (',', 7, 8), ('很', 8, 9), ('开心', 9, 11)]
如果我们只是找到某个特定的词汇在文中的位置,拿之前的西游记文本为例,我们去寻找词汇 “行者” 第一次出现的位置
with open('西游记.txt','r',errors='ignore')as f: data = f.read()result = jieba.tokenize(data) for i in result: if '行者' in i: print(i) break
结果:
('行者', 8593, 8595)
如此,就能很方便的找到特定词汇在文章中出现的位置。
以上就是 jieba 库的常用的方法,该库还包括词性标注、并行分词、命令行分词、添加字典等等功能。
更详细的内容参考官方文档:https://github.com/fxsjy/jieba
对该库的算法感兴趣的同学可参考
jieba分词的基本思路:
https://segmentfault.com/a/1190000004061791
对Python中文分词模块结巴分词算法过程的理解和分析:http://blog.csdn.net/rav009/article/details/12196623
感谢各位的阅读,以上就是“Python中jieba分词模块的用法”的内容了,经过本文的学习后,相信大家对Python中jieba分词模块的用法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341