我的编程空间,编程开发者的网络收藏夹
学习永远不晚

GO CountMinSketch计数器(布隆过滤器思想的近似计数器)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

GO CountMinSketch计数器(布隆过滤器思想的近似计数器)

简介

CountMinSketch是一种计数器,用来统计一个元素的计数,它能够以一个非常小的空间统计大量元素的计数,同时保证高的性能及准确性。

与布隆过滤器类似,由于它是基于概率的,因此它所统计的计数是有一定概率存在误差的,也就是可能会比真实的计数大。比如一个元素实际的计数是10,但是计算器的计算结果可能比10大。因此适合能够容忍计数存在一定误差的场景,比如社交网络中推文的访问次数。

它一秒能够进行上百万次操作(主要取决于哈希函数的速度),并且如果我们每天有一个长度为100亿的数据流需要进行计数,计数值允许的误差范围是100,允许的错误率是0.1%,计数器大小是32位,只需要7.2GB内存,这完全可以单机进行计数。

原理

数据结构

CountMinSketch计数器的数据结构是一个二维数组,每一个元素都是一个计数器,计数器可以使用一个数值类型进行表示,比如无符号int

增加计数

每个元素会通过不同的哈希函数映射到每一行的某个位置,并增加对应位置上的计数:

估算计数

估算计数也是如上图流程,根据哈希映射到每一行的对应位置,然后读取所有行的计数,返回其中最小的一个。

返回最小的一个是因为其他其他元素也可能会映射到自身所映射位置上面,导致计数比真实计数大,因此最小的一个计数最可能是真实计数:

比如上图元素123映射到了元素abc第一行的相同位置,因此这个位置的计数累加了元素abc和元素123的计数和。但是只要我们取三行里面最小的一个计数,那么就能容忍这种情况。

当然,如果一个元素的每一行的对应位置都被其他元素所映射,那么这个估算的计数就会比真实计数大。

哈希函数

CountMinSketch计数器里面的哈希函数需要是彼此独立且均匀分布(类似于哈希表的哈希函数),而且需要尽可能的快,比如murmur3就是一个很好的选择。

CountMinSketch计数器的性能严重依赖于哈希函数的性能,而一般哈希函数的性能则依赖于输入串(一般为字节数组)的长度,因此为了提高CountMinSketch计数器的性能建议减少输入串的长度。

下面是一个简单的性能测试,单位是字节,可以看到时间的消耗随着元素的增大基本是线性增长的:

pkg: github.com/jiaxwu/gommon/counter/cm
cpu: Intel(R) Core(TM) i5-10210U CPU @ 1.60GHz
BenchmarkAddAndEstimate/1-8              2289142               505.9 ns/op         1.98 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/2-8              2357380               513.7 ns/op         3.89 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/4-8              2342382               496.9 ns/op         8.05 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/8-8              2039792               499.7 ns/op        16.01 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/16-8             2350281               526.8 ns/op        30.37 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/32-8             2558060               444.3 ns/op        72.03 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/64-8             2540272               459.5 ns/op       139.29 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/128-8            1919720               538.6 ns/op       237.67 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/256-8            1601738               720.6 ns/op       355.28 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/512-8             950584              1599 ns/op         320.18 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/1024-8            363592              3169 ns/op         323.17 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/2048-8            187500              5888 ns/op         347.81 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/4096-8            130425              8825 ns/op         464.15 MB/s           0 B/op          0 allocs/op
BenchmarkAddAndEstimate/8192-8             67198             17460 ns/op         469.18 MB/s           0 B/op          0 allocs/op

数组大小、哈希函数数量、错误范围、错误率

数组大小、哈希函数数量、错误范围和错误率之间是互相影响的,如果我们想减少错误率和错误范围,则需要更大的数组和更多的哈希函数。但是我们很难直观的计算出这些参数,还好有两个公式可以帮助我们计算出准确的数值:

在我们可以确定我们的数据流大小和能够容忍的错误范围错误率的情况下,我们可以根据下面公式计算数组大小哈希函数数量

n = 数据流大小 
m = 数组大小
k = 哈希函数数量 
eRange = 错误范围(ErrorRange)
eRate = 错误率(ErrorRate)
ceil() = 向上取整操作
E = 2.718281828459045(自然常数)

m = ceil(E/(eRange/n))
k = ceil(ln(1/eRate))

应用

TopK(海量数据计数器)

对于海量数据流中频率最高的K个数,如果使用常规的map<key, uint>,由于内存大小限制,一般情况下单机无法完成计算,需要把数据路由到多台机器上进行计数。

而如果我们使用CountMinSketch则能够在单机情况下处理大量的数据,比如开头所提到对于一个长度为100亿的数据流进行计数,只需要7.2GB内存。这个计数结果可能存在一定误差,不过我们可以在这个基础上再进行过滤。

TinyLFU

TinyLFU是一个缓存淘汰策略,它里面有LFU策略的思想,LFU是一个基于访问频率的淘汰策略,因此需要统计每个元素被访问的次数。如果对每个元素使用一个独立的计数器,那么这个成本会很大,而且对于一个缓存淘汰策略来说,我们并不需要这个计数器非常大且非常准确。

因此TinyLFU使用一个计数器长度为4位的CountMinSketch计数器统计每个元素的频率,减少计数所消耗的内存空间,同时还引入了计数衰减机制避免某些之前热门但是当前已经很少被访问的元素很难被淘汰。

实现

这里给出一个Golang的泛型实现,这个实现支持uint8uint16uint32uint64等基本类型计数器,实际上还可以实现比如长度为2bit4bit6bit的计数器,但是代码会稍微复杂一点(特别是非2的次方的计数器)。

package cm
import (
	"math"

	"github.com/jiaxwu/gommon/hash"
	mmath "github.com/jiaxwu/gommon/math"
	"github.com/jiaxwu/gommon/mem"
	"golang.org/x/exp/constraints"
)

// Count-Min Sketch 计数器,原理类似于布隆过滤器,根据哈希映射到多个位置,然后在对应位置进行计数
// 读取时拿对应位置最小的
// 适合需要一个比较小的计数,而且不需要这个计数一定准确的情况
// 可以减少空间消耗
// https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.8351&rep=rep1&type=pdf
type Counter[T constraints.Unsigned] struct {
	counters    [][]T
	countersLen uint64       // 计数器长度
	hashs       []*hash.Hash // 哈希函数列表
	maxCount    T            // 最大计数值
}

// 创建一个计数器
// size:数据流大小
// errorRange:计数值误差范围(会超过真实计数值)
// errorRate:错误率
func New[T constraints.Unsigned](size uint64, errorRange T, errorRate float64) *Counter[T] {
	// 计数器长度
	countersLen := uint64(math.Ceil(math.E / (float64(errorRange) / float64(size))))
	// 哈希个数
	hashsCnt := int(math.Ceil(math.Log(1.0 / errorRate)))
	hashs := make([]*hash.Hash, hashsCnt)
	counters := make([][]T, hashsCnt)
	for i := 0; i < hashsCnt; i++ {
		hashs[i] = hash.New()
		counters[i] = make([]T, countersLen)
	}
	return &Counter[T]{
		counters:    counters,
		countersLen: countersLen,
		hashs:       hashs,
		maxCount:    T(0) - 1,
	}
}

// 增加元素的计数
func (c *Counter[T]) Add(b []byte, val T) {
	for i, h := range c.hashs {
		index := h.Sum64(b) % c.countersLen
		if c.counters[i][index]+val <= c.counters[i][index] {
			c.counters[i][index] = c.maxCount
		} else {
			c.counters[i][index] += val
		}
	}
}

// 增加元素的计数
// 等同于Add(b, 1)
func (c *Counter[T]) Inc(b []byte) {
	c.Add(b, 1)
}

// 增加元素的计数
// 字符串类型
func (c *Counter[T]) AddString(s string, val T) {
	c.Add([]byte(s), val)
}

// 增加元素的计数
// 等同于Add(b, 1)
// 字符串类型
func (c *Counter[T]) IncString(s string) {
	c.Add([]byte(s), 1)
}

// 估算元素的计数
func (c *Counter[T]) Estimate(b []byte) T {
	minCount := c.maxCount
	for i, h := range c.hashs {
		index := h.Sum64(b) % c.countersLen
		count := c.counters[i][index]
		if count == 0 {
			return 0
		}
		minCount = mmath.Min(minCount, count)
	}
	return minCount
}

// 估算元素的计数
// 字符串类型
func (c *Counter[T]) EstimateString(s string) T {
	return c.Estimate([]byte(s))
}

// 计数衰减
// 如果factor为0则直接清空
func (c *Counter[T]) Attenuation(factor T) {
	for _, counter := range c.counters {
		if factor == 0 {
			mem.Memset(counter, 0)
		} else {
			for j := uint64(0); j < c.countersLen; j++ {
				counter[j] /= factor
			}
		}
	}
}

数据结构

这里的数据结构核心是一个k*m的二维数组counters,k是哈希函数数量,m是数组每一行的长度;countersLen其实就是m;hashs是哈希函数列表;maxCount是当前类型的最大值,比如uint8就是255,下面的计算需要用到它。

type Counter[T constraints.Unsigned] struct {
	counters    [][]T
	countersLen uint64       // 计数器长度
	hashs       []*hash.Hash // 哈希函数列表
	maxCount    T            // 最大计数值
}

初始化

我们首先使用上面提到的两个公式计算数组每一行长度和哈希函数的数量,然后初始化哈希函数列表和二维数组。

// 创建一个计数器
// size:数据流大小
// errorRange:计数值误差范围(会超过真实计数值)
// errorRate:错误率
func New[T constraints.Unsigned](size uint64, errorRange T, errorRate float64) *Counter[T] {
	// 计数器长度
	countersLen := uint64(math.Ceil(math.E / (float64(errorRange) / float64(size))))
	// 哈希个数
	hashsCnt := int(math.Ceil(math.Log(1.0 / errorRate)))
	hashs := make([]*hash.Hash, hashsCnt)
	counters := make([][]T, hashsCnt)
	for i := 0; i < hashsCnt; i++ {
		hashs[i] = hash.New()
		counters[i] = make([]T, countersLen)
	}
	return &Counter[T]{
		counters:    counters,
		countersLen: countersLen,
		hashs:       hashs,
		maxCount:    T(0) - 1,
	}
}

增加计数

对于一个元素,我们需要把它根据每个哈希函数计算出它在每一行数组的位置,然后增加对应位置计数器的计数值。

这里需要注意的是,计数值可能会溢出,因此我们首先判断是否溢出,如果溢出则设置为最大值。

// 增加元素的计数
func (c *Counter[T]) Add(b []byte, val T) {
	for i, h := range c.hashs {
		index := h.Sum64(b) % c.countersLen
		if c.counters[i][index]+val <= c.counters[i][index] {
			c.counters[i][index] = c.maxCount
		} else {
			c.counters[i][index] += val
		}
	}
}

估算计数

同增加计数原理,把元素根据哈希函数映射到每一行数组的对应位置,然后选择所有行中最小的那个计数值。

// 估算元素的计数
func (c *Counter[T]) Estimate(b []byte) T {
	minCount := c.maxCount
	for i, h := range c.hashs {
		index := h.Sum64(b) % c.countersLen
		count := c.counters[i][index]
		if count == 0 {
			return 0
		}
		minCount = mmath.Min(minCount, count)
	}
	return minCount
}

到此这篇关于GO CountMinSketch计数器(布隆过滤器思想的近似计数器)的文章就介绍到这了,更多相关GO CountMinSketch内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

GO CountMinSketch计数器(布隆过滤器思想的近似计数器)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

布隆过滤器的Python实现(标准、计

github:bloompy布隆过滤器的Python3实现,包括标准、计数、标准扩容、计数扩容。更新自pybloom。安装pip install bloompy使用通过bloompy你可以使用四种布隆过滤器标准布隆过滤器标准布隆过滤器只能进
2023-01-31

PHP数据结构:布隆过滤器的巧用,实现高效的集合检索

布隆过滤器是一种空间效率高的数据结构,用于判断元素是否属于集合。它使用哈希函数和位数组来高效地查找是否存在该元素,可能会出现假阳性。它适用于需要快速检索大量元素的场景,如url重复检测。PHP 数据结构:巧用布隆过滤器,实现高效集合检索简
PHP数据结构:布隆过滤器的巧用,实现高效的集合检索
2024-05-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录