我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java中的word分词怎么使用

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java中的word分词怎么使用

本篇内容介绍了“Java中的word分词怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词。能通过自定义配置文件来改变组件行为,能自定义用户词库、自动检测词库变化、支持大规模分布式环境,能灵活指定多种分词算法,能使用refine功能灵活控制分词结果,还能使用词性标注、同义标注、反义标注、拼音标注等功能。同时还无缝和Lucene、Solr、ElasticSearch、Luke集成。注意:word1.3需要JDK1.8

Maven依赖:

在pom.xml中指定dependency,可用版本有1.0、1.1、1.2:

<dependencies>

    <dependency>

        <groupId>org.apdplat</groupId>

        <artifactId>word</artifactId>

        <version>1.2</version>

    </dependency>

</dependencies>

分词使用方法:

快速体验

运行项目根目录下的脚本demo-word.bat可以快速体验分词效果

用法: command [text] [input] [output]

命令command的可选值为:demo、text、file

demo

text 杨尚川是APDPlat应用级产品开发平台的作者

file d:/text.txt d:/word.txt

exit

对文本进行分词

移除停用词:List<Word> words = WordSegmenter.seg("杨尚川是APDPlat应用级产品开发平台的作者");

保留停用词:List<Word> words = WordSegmenter.segWithStopWords("杨尚川是APDPlat应用级产品开发平台的作者");

            System.out.println(words);

输出:

移除停用词:[杨尚川, apdplat, 应用级, 产品, 开发平台, 作者]

保留停用词:[杨尚川, 是, apdplat, 应用级, 产品, 开发平台, 的, 作者]

对文件进行分词

String input = "d:/text.txt";

String output = "d:/word.txt";

移除停用词:WordSegmenter.seg(new File(input), new File(output));

保留停用词:WordSegmenter.segWithStopWords(new File(input), new File(output));

自定义配置文件

默认配置文件为类路径下的word.conf,打包在word-x.x.jar中

自定义配置文件为类路径下的word.local.conf,需要用户自己提供

如果自定义配置和默认配置相同,自定义配置会覆盖默认配置

配置文件编码为UTF-8

自定义用户词库

自定义用户词库为一个或多个文件夹或文件,可以使用绝对路径或相对路径

用户词库由多个词典文件组成,文件编码为UTF-8

词典文件的格式为文本文件,一行代表一个词

可以通过系统属性或配置文件的方式来指定路径,多个路径之间用逗号分隔开

类路径下的词典文件,需要在相对路径前加入前缀classpath:

指定方式有三种:

    指定方式一,编程指定(高优先级):

        WordConfTools.set("dic.path", "classpath:dic.txt,d:/custom_dic");

        DictionaryFactory.reload();//更改词典路径之后,重新加载词典

    指定方式二,Java虚拟机启动参数(中优先级):

        java -Ddic.path=classpath:dic.txt,d:/custom_dic

    指定方式三,配置文件指定(低优先级):

        使用类路径下的文件word.local.conf来指定配置信息

        dic.path=classpath:dic.txt,d:/custom_dic

如未指定,则默认使用类路径下的dic.txt词典文件

自定义停用词词库

使用方式和自定义用户词库类似,配置项为:

stopwords.path=classpath:stopwords.txt,d:/custom_stopwords_dic

自动检测词库变化

可以自动检测自定义用户词库和自定义停用词词库的变化

包含类路径下的文件和文件夹、非类路径下的绝对路径和相对路径

如:

classpath:dic.txt,classpath:custom_dic_dir,

d:/dic_more.txt,d:/DIC_DIR,D:/DIC2_DIR,my_dic_dir,my_dic_file.txt

classpath:stopwords.txt,classpath:custom_stopwords_dic_dir,

d:/stopwords_more.txt,d:/STOPWORDS_DIR,d:/STOPWORDS2_DIR,stopwords_dir,remove.txt

显式指定分词算法

对文本进行分词时,可显式指定特定的分词算法,如:

WordSegmenter.seg("APDPlat应用级产品开发平台", SegmentationAlgorithm.BidirectionalMaximumMatching);

SegmentationAlgorithm的可选类型为:   

正向最大匹配算法:MaximumMatching

逆向最大匹配算法:ReverseMaximumMatching

正向最小匹配算法:MinimumMatching

逆向最小匹配算法:ReverseMinimumMatching

双向最大匹配算法:BidirectionalMaximumMatching

双向最小匹配算法:BidirectionalMinimumMatching

双向最大最小匹配算法:BidirectionalMaximumMinimumMatching

全切分算法:FullSegmentation

最少分词算法:MinimalWordCount

最大Ngram分值算法:MaxNgramScore

分词效果评估

运行项目根目录下的脚本evaluation.bat可以对分词效果进行评估

评估采用的测试文本有253 3709行,共2837 4490个字符

评估结果位于target/evaluation目录下:

corpus-text.txt为分好词的人工标注文本,词之间以空格分隔

test-text.txt为测试文本,是把corpus-text.txt以标点符号分隔为多行的结果

standard-text.txt为测试文本对应的人工标注文本,作为分词是否正确的标准

result-text-***.txt,***为各种分词算法名称,这是word分词结果

perfect-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准完全一致的文本

wrong-result-***.txt,***为各种分词算法名称,这是分词结果和人工标注标准不一致的文本

分布式中文分词器

在自定义配置文件word.conf或word.local.conf中指定所有的配置项*.path使用HTTP资源,同时指定配置项redis.*

配置并启动提供HTTP资源的web服务器,将项目:https://github.com/ysc/word_web部署到tomcat

配置并启动redis服务器

词性标注(1.3才有这个功能)

将分词结果作为输入参数,调用PartOfSpeechTagging类的process方法,词性保存在Word类的partOfSpeech字段中

如下所示:

List<Word> words = WordSegmenter.segWithStopWords("我爱中国");

System.out.println("未标注词性:"+words);

//词性标注

PartOfSpeechTagging.process(words);

System.out.println("标注词性:"+words);

输出内容:

未标注词性:[我, 爱, 中国]

标注词性:[我/r, 爱/v, 中国/ns]

refine

我们看一个切分例子:

List<Word> words = WordSegmenter.segWithStopWords("我国工人阶级和广大劳动群众要更加紧密地团结在党中央周围");

System.out.println(words);

结果如下:

[我国, 工人阶级, 和, 广大, 劳动群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]

假如我们想要的切分结果是:

[我国, 工人, 阶级, 和, 广大, 劳动, 群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]

也就是要把“工人阶级”细分为“工人 阶级”,把“劳动群众”细分为“劳动 群众”,那么我们该怎么办呢?

我们可以通过在word.refine.path配置项指定的文件classpath:word_refine.txt中增加以下内容:

工人阶级=工人 阶级

劳动群众=劳动 群众

然后,我们对分词结果进行refine:

words = WordRefiner.refine(words);

System.out.println(words);

这样,就能达到我们想要的效果:

[我国, 工人, 阶级, 和, 广大, 劳动, 群众, 要, 更加, 紧密, 地, 团结, 在, 党中央, 周围]

我们再看一个切分例子:

List<Word> words = WordSegmenter.segWithStopWords("在实现“两个一百年”奋斗目标的伟大征程上再创新的业绩");

System.out.println(words);

结果如下:

[在, 实现, 两个, 一百年, 奋斗目标, 的, 伟大, 征程, 上, 再创, 新的, 业绩]

假如我们想要的切分结果是:

[在, 实现, 两个一百年, 奋斗目标, 的, 伟大征程, 上, 再创, 新的, 业绩]

也就是要把“两个 一百年”合并为“两个一百年”,把“伟大, 征程”合并为“伟大征程”,那么我们该怎么办呢?

我们可以通过在word.refine.path配置项指定的文件classpath:word_refine.txt中增加以下内容:

两个 一百年=两个一百年

伟大 征程=伟大征程

然后,我们对分词结果进行refine:

words = WordRefiner.refine(words);

System.out.println(words);

这样,就能达到我们想要的效果:

[在, 实现, 两个一百年, 奋斗目标, 的, 伟大征程, 上, 再创, 新的, 业绩]

同义标注

List<Word> words = WordSegmenter.segWithStopWords("楚离陌千方百计为无情找回记忆");

System.out.println(words);

结果如下:

[楚离陌, 千方百计, 为, 无情, 找回, 记忆]

做同义标注:

SynonymTagging.process(words);

System.out.println(words);

结果如下:

[楚离陌, 千方百计[久有存心, 化尽心血, 想方设法, 费尽心机], 为, 无情, 找回, 记忆[影象]]

如果启用间接同义词:

SynonymTagging.process(words, false);

System.out.println(words);

结果如下:

[楚离陌, 千方百计[久有存心, 化尽心血, 想方设法, 费尽心机], 为, 无情, 找回, 记忆[影像, 影象]]

List<Word> words = WordSegmenter.segWithStopWords("手劲大的老人往往更长寿");

System.out.println(words);

结果如下:

[手劲, 大, 的, 老人, 往往, 更, 长寿]

做同义标注:

SynonymTagging.process(words);

System.out.println(words);

结果如下:

[手劲, 大, 的, 老人[白叟], 往往[常常, 每每, 经常], 更, 长寿[长命, 龟龄]]

如果启用间接同义词:

SynonymTagging.process(words, false);

System.out.println(words);

结果如下:

[手劲, 大, 的, 老人[白叟], 往往[一样平常, 一般, 凡是, 寻常, 常常, 常日, 平凡, 平居, 平常, 平日, 平时, 往常, 日常, 日常平凡, 时常, 普通, 每每, 泛泛, 素日, 经常, 通俗, 通常], 更, 长寿[长命, 龟龄]]

以词“千方百计”为例:

可以通过Word的getSynonym()方法获取同义词如:

System.out.println(word.getSynonym());

结果如下:

[久有存心, 化尽心血, 想方设法, 费尽心机]

注意:如果没有同义词,则getSynonym()返回空集合:Collections.emptyList()

间接同义词和直接同义词的区别如下:

假设:

A和B是同义词,A和C是同义词,B和D是同义词,C和E是同义词

则:

对于A来说,A B C是直接同义词

对于B来说,A B D是直接同义词

对于C来说,A C E是直接同义词

对于A B C来说,A B C D E是间接同义词

反义标注

List<Word> words = WordSegmenter.segWithStopWords("5月初有哪些电影值得观看");

System.out.println(words);

结果如下:

[5, 月初, 有, 哪些, 电影, 值得, 观看]

做反义标注:

AntonymTagging.process(words);

System.out.println(words);

结果如下:

[5, 月初[月底, 月末, 月终], 有, 哪些, 电影, 值得, 观看]

List<Word> words = WordSegmenter.segWithStopWords("由于工作不到位、服务不完善导致顾客在用餐时发生不愉快的事情,餐厅方面应该向顾客作出真诚的道歉,而不是敷衍了事。");

System.out.println(words);

结果如下:

[由于, 工作, 不到位, 服务, 不完善, 导致, 顾客, 在, 用餐, 时, 发生, 不愉快, 的, 事情, 餐厅, 方面, 应该, 向, 顾客, 作出, 真诚, 的, 道歉, 而不是, 敷衍了事]

做反义标注:

AntonymTagging.process(words);

System.out.println(words);

结果如下:

[由于, 工作, 不到位, 服务, 不完善, 导致, 顾客, 在, 用餐, 时, 发生, 不愉快, 的, 事情, 餐厅, 方面, 应该, 向, 顾客, 作出, 真诚[糊弄, 虚伪, 虚假, 险诈], 的, 道歉, 而不是, 敷衍了事[一丝不苟, 兢兢业业, 尽心竭力, 竭尽全力, 精益求精, 诚心诚意]]

以词“月初”为例:

可以通过Word的getAntonym()方法获取反义词如:

System.out.println(word.getAntonym());

结果如下:

[月底, 月末, 月终]

注意:如果没有反义词,getAntonym()返回空集合:Collections.emptyList()

拼音标注

List<Word> words = WordSegmenter.segWithStopWords("《速度与激情7》的中国内地票房自4月12日上映以来,在短短两周内突破20亿人民币");

System.out.println(words);

结果如下:

[速度, 与, 激情, 7, 的, 中国, 内地, 票房, 自, 4月, 12日, 上映, 以来, 在, 短短, 两周, 内, 突破, 20亿, 人民币]

执行拼音标注:

PinyinTagging.process(words);

System.out.println(words);

结果如下:

[速度 sd sudu, 与 y yu, 激情 jq jiqing, 7, 的 d de, 中国 zg zhongguo, 内地 nd neidi, 票房 pf piaofang, 自 z zi, 4月, 12日, 上映 sy shangying, 以来 yl yilai, 在 z zai, 短短 dd duanduan, 两周 lz liangzhou, 内 n nei, 突破 tp tupo, 20亿, 人民币 rmb renminbi]

以词“速度”为例:

可以通过Word的getFullPinYin()方法获取完整拼音如:sudu

可以通过Word的getAcronymPinYin()方法获取首字母缩略拼音如:sd

Lucene插件:

构造一个word分析器ChineseWordAnalyzer

Analyzer analyzer = new ChineseWordAnalyzer();

如果需要使用特定的分词算法,可通过构造函数来指定:

Analyzer analyzer = new ChineseWordAnalyzer(SegmentationAlgorithm.FullSegmentation);

如不指定,默认使用双向最大匹配算法:SegmentationAlgorithm.BidirectionalMaximumMatching

可用的分词算法参见枚举类:SegmentationAlgorithm

利用word分析器切分文本

TokenStream tokenStream = analyzer.tokenStream("text", "杨尚川是APDPlat应用级产品开发平台的作者");

//准备消费

tokenStream.reset();

//开始消费

while(tokenStream.incrementToken()){

    //词

    CharTermAttribute charTermAttribute = tokenStream.getAttribute(CharTermAttribute.class);

    //词在文本中的起始位置

    OffsetAttribute offsetAttribute = tokenStream.getAttribute(OffsetAttribute.class);

    //第几个词

    PositionIncrementAttribute positionIncrementAttribute = tokenStream.getAttribute(PositionIncrementAttribute.class);

    //词性

    PartOfSpeechAttribute partOfSpeechAttribute = tokenStream.getAttribute(PartOfSpeechAttribute.class);

    //首字母缩略拼音

    AcronymPinyinAttribute acronymPinyinAttribute = tokenStream.getAttribute(AcronymPinyinAttribute.class);

    //完整拼音

    FullPinyinAttribute fullPinyinAttribute = tokenStream.getAttribute(FullPinyinAttribute.class);

    //同义词

    SynonymAttribute synonymAttribute = tokenStream.getAttribute(SynonymAttribute.class);

    //反义词

    AntonymAttribute antonymAttribute = tokenStream.getAttribute(AntonymAttribute.class);

    LOGGER.info(charTermAttribute.toString()+" ("+offsetAttribute.startOffset()+" - "+offsetAttribute.endOffset()+") "+positionIncrementAttribute.getPositionIncrement());

    LOGGER.info("PartOfSpeech:"+partOfSpeechAttribute.toString());

    LOGGER.info("AcronymPinyin:"+acronymPinyinAttribute.toString());

    LOGGER.info("FullPinyin:"+fullPinyinAttribute.toString());

    LOGGER.info("Synonym:"+synonymAttribute.toString());

    LOGGER.info("Antonym:"+antonymAttribute.toString());

}

//消费完毕

tokenStream.close();

利用word分析器建立Lucene索引

Directory directory = new RAMDirectory();

IndexWriterConfig config = new IndexWriterConfig(analyzer);

IndexWriter indexWriter = new IndexWriter(directory, config);

利用word分析器查询Lucene索引

QueryParser queryParser = new QueryParser("text", analyzer);

Query query = queryParser.parse("text:杨尚川");

TopDocs docs = indexSearcher.search(query, Integer.MAX_VALUE);

Solr插件:

下载word-1.3.jar

下载地址:http://search.maven.org/remotecontent?filepath=org/apdplat/word/1.3/word-1.3.jar

创建目录solr-5.1.0/example/solr/lib,将word-1.3.jar复制到lib目录

配置schema指定分词器

将solr-5.1.0/example/solr/collection1/conf/schema.xml文件中所有的

<tokenizer class="solr.WhitespaceTokenizerFactory"/>和

<tokenizer class="solr.StandardTokenizerFactory"/>全部替换为

<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory"/>

并移除所有的filter标签

如果需要使用特定的分词算法:

<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"/>

segAlgorithm可选值有:  

正向最大匹配算法:MaximumMatching

逆向最大匹配算法:ReverseMaximumMatching

正向最小匹配算法:MinimumMatching

逆向最小匹配算法:ReverseMinimumMatching

双向最大匹配算法:BidirectionalMaximumMatching

双向最小匹配算法:BidirectionalMinimumMatching

双向最大最小匹配算法:BidirectionalMaximumMinimumMatching

全切分算法:FullSegmentation

最少分词算法:MinimalWordCount

最大Ngram分值算法:MaxNgramScore

如不指定,默认使用双向最大匹配算法:BidirectionalMaximumMatching

如果需要指定特定的配置文件:

<tokenizer class="org.apdplat.word.solr.ChineseWordTokenizerFactory" segAlgorithm="ReverseMinimumMatching"

        conf="solr-5.1.0/example/solr/nutch/conf/word.local.conf"/>

word.local.conf文件中可配置的内容见 word-1.3.jar 中的word.conf文件

如不指定,使用默认配置文件,位于 word-1.3.jar 中的word.conf文件

ElasticSearch插件:

打开命令行并切换到elasticsearch的bin目录

cd elasticsearch-1.5.1/bin

运行plugin脚本安装word分词插件:

./plugin -u http://apdplat.org/word/archive/v1.2.zip -i word

修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:    

index.analysis.analyzer.default.type : "word"

index.analysis.tokenizer.default.type : "word"

启动ElasticSearch测试效果,在Chrome浏览器中访问:    

http://localhost:9200/_analyze?analyzer=word&text=杨尚川是APDPlat应用级产品开发平台的作者

自定义配置

修改配置文件elasticsearch-1.5.1/plugins/word/word.local.conf

指定分词算法

修改文件elasticsearch-1.5.1/config/elasticsearch.yml,新增如下配置:

index.analysis.analyzer.default.segAlgorithm : "ReverseMinimumMatching"

index.analysis.tokenizer.default.segAlgorithm : "ReverseMinimumMatching"

这里segAlgorithm可指定的值有:

正向最大匹配算法:MaximumMatching

逆向最大匹配算法:ReverseMaximumMatching

正向最小匹配算法:MinimumMatching

逆向最小匹配算法:ReverseMinimumMatching

双向最大匹配算法:BidirectionalMaximumMatching

双向最小匹配算法:BidirectionalMinimumMatching

双向最大最小匹配算法:BidirectionalMaximumMinimumMatching

全切分算法:FullSegmentation

最少分词算法:MinimalWordCount

最大Ngram分值算法:MaxNgramScore

如不指定,默认使用双向最大匹配算法:BidirectionalMaximumMatching

Luke插件:

下载http://luke.googlecode.com/files/lukeall-4.0.0-ALPHA.jar(国内不能访问)

下载并解压Java中文分词组件word-1.0-bin.zip:http://pan.baidu.com/s/1dDziDFz

将解压后的 Java中文分词组件word-1.0-bin/word-1.0 文件夹里面的4个jar包解压到当前文件夹

用压缩解压工具如winrar打开lukeall-4.0.0-ALPHA.jar,将当前文件夹里面除了META-INF文件夹、.jar、

.bat、.html、word.local.conf文件外的其他所有文件拖到lukeall-4.0.0-ALPHA.jar里面

执行命令 java -jar lukeall-4.0.0-ALPHA.jar 启动luke,在Search选项卡的Analysis里面

就可以选择 org.apdplat.word.lucene.ChineseWordAnalyzer 分词器了

在Plugins选项卡的Available analyzers found on the current classpath里面也可以选择 

org.apdplat.word.lucene.ChineseWordAnalyzer 分词器

注意:如果你要自己集成word分词器的其他版本,在项目根目录下运行mvn install编译项目,然后运行命令

mvn dependency:copy-dependencies复制依赖的jar包,接着在target/dependency/目录下就会有所有

的依赖jar包。其中target/dependency/slf4j-api-1.6.4.jar是word分词器使用的日志框架,

target/dependency/logback-classic-0.9.28.jar和

target/dependency/logback-core-0.9.28.jar是word分词器推荐使用的日志实现,日志实现的配置文件

路径位于target/classes/logback.xml,target/word-1.3.jar是word分词器的主jar包,如果需要

自定义词典,则需要修改分词器配置文件target/classes/word.conf

已经集成好的Luke插件下载(适用于lucene4.0.0) :lukeall-4.0.0-ALPHA-with-word-1.0.jar

已经集成好的Luke插件下载(适用于lucene4.10.3):lukeall-4.10.3-with-word-1.2.jar

词向量:

从大规模语料中统计一个词的上下文相关词,并用这些上下文相关词组成的向量来表达这个词。

通过计算词向量的相似性,即可得到词的相似性。

相似性的假设是建立在如果两个词的上下文相关词越相似,那么这两个词就越相似这个前提下的。

通过运行项目根目录下的脚本demo-word-vector-corpus.bat来体验word项目自带语料库的效果

如果有自己的文本内容,可以使用脚本demo-word-vector-file.bat来对文本分词、建立词向量、计算相似性

“Java中的word分词怎么使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java中的word分词怎么使用

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java中的word分词怎么使用

本篇内容介绍了“Java中的word分词怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!word分词是一个Java实现的分布式的中文分
2023-06-04

基于java的中文分词工具ANSJ怎么使用

这篇文章主要讲解了“基于java的中文分词工具ANSJ怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“基于java的中文分词工具ANSJ怎么使用”吧!ANSJ这是一个基于n-Gram+
2023-06-19

Spark中怎样使用HanLP分词

Spark中怎样使用HanLP分词,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。1.将HanLP的data(包含词典和模型)放到hdfs上,然后在项目配置文件h
2023-06-02

word分页功能怎么使用

本篇内容主要讲解“word分页功能怎么使用”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“word分页功能怎么使用”吧!word分页使用方法:方法一: 1、首先进入word,点击“插入”。 2、然
2023-07-01

Python怎么使用Spacy进行分词

这篇文章主要介绍“Python怎么使用Spacy进行分词”,在日常操作中,相信很多人在Python怎么使用Spacy进行分词问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python怎么使用Spacy进行分词
2023-06-30

Tensorflow2.4中怎么使用Word Embedding实现文本分类

这篇“Tensorflow2.4中怎么使用Word Embedding实现文本分类”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这
2023-07-04

C++中怎么利用LeetCode拆分词

这期内容当中小编将会给大家带来有关C++中怎么利用LeetCode拆分词,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。[LeetCode] 140.Word Break II 拆分词句之二Given a
2023-06-20

mysql中的关键词exists怎么使用

在MySQL中,EXISTS 关键字用于检查子查询是否返回任何行。它的语法如下:SELECT column1, column2, ...FROM table_nameWHERE EXISTS (subquery);例如,假设我们有两个
mysql中的关键词exists怎么使用
2024-04-09

使用Pinyin4j怎么实现拼音分词

使用Pinyin4j怎么实现拼音分词?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。使用maven引入相关的jar co
2023-05-30

怎么在Java中使用DFA算法过滤敏感词

怎么在Java中使用DFA算法过滤敏感词?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。具体实现: 1、匹配大小写过滤 2、匹配全角半角过滤 3、匹配过滤停顿词过滤。 4、敏
2023-05-30

java词法分析器DDL递归怎么应用

这篇文章主要讲解了“java词法分析器DDL递归怎么应用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“java词法分析器DDL递归怎么应用”吧!intellij plugin考虑到我们主要是
2023-07-02

Elasticsearch 计数分词中的token使用实例

这篇文章主要为大家介绍了Elasticsearch 计数分词中的token使用示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-01-31

mysql中关键词exists怎么使用

这篇文章主要讲解了“mysql中关键词exists怎么使用”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“mysql中关键词exists怎么使用”吧!语法解释语法SELECT column1
2023-07-02

word的if函数怎么使用

这篇文章主要介绍“word的if函数怎么使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“word的if函数怎么使用”文章能帮助大家解决问题。word的if函数使用方法:1、首先打开Word,插入表
2023-07-01

Java中Word怎么利用com进行操作

Java中Word怎么利用com进行操作?针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。实例代码如下:import com.jacob.activeX.ActiveXComp
2023-05-31

怎么在Python中利用Spacy进行分词

本篇文章给大家分享的是有关怎么在Python中利用Spacy进行分词,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。python是什么意思Python是一种跨平台的、具有解释性、
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录