我的编程空间,编程开发者的网络收藏夹
学习永远不晚

深度学习环境搭建anaconda+pycharm+pytorch的方法步骤

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

深度学习环境搭建anaconda+pycharm+pytorch的方法步骤

本文将详细介绍一下如何搭建深度学习所需要的实验环境.
这个框架分为以下六个模块

在这里插入图片描述

显卡

简单理解这个就是我们常说的GPU,显卡的功能是一个专门做矩阵运算的部件,用于显示方面的运算,现在神经网络中绝大操作都是对矩阵的运算,所以我们当然可以将显卡的矩阵运算功能应用起来,来提高计算速度.

驱动

通常指NVIDIA Driver,其实它就是一个驱动软件,而前面的显卡就是硬件

cuda

cuda是一个扩展包,能够使得使用GPU进行通用计算变得简单和优雅,它本质上是一套指令集,我们通过这个指令集来使用显卡的矩阵运算操作;

Q:如何查看显卡支持的cuda的最高版本?

在这里插入图片描述

在这里插入图片描述

anaconda

1. 下载安装

下载官网:https://www.anaconda.com/

在这里插入图片描述

选择与系统位数对应的安装包下载即可。

在这里插入图片描述

Anaconda占用空间较大,建议选择一个空闲的磁盘专门用来放Anaconda。

在这里插入图片描述

勾选添加环境变量

在这里插入图片描述

2. 安装pytorch虚拟环境

创建一个虚拟环境:conda create -n torch(虚拟环境名) python = 3.7

在这里插入图片描述

此步骤 若出现以下情况:

在这里插入图片描述

解决方法:
在创建新的虚拟环境前先输入以下命令。


conda config --add channels conda-forge
conda config --set channel_priority strict
conda config --set channel_priority flexible

在这里插入图片描述

这个路径下存放的就是我们创建好的虚拟环境,torch文件夹下存放的就是我们在该环境下安装的一些包等等。

在这里插入图片描述

在这里插入图片描述

激活并进入该环境:conda activate torch

激活环境前处于“大厅”位置(base),在激活torch环境后,我们可以看到已经进入了我们刚才新建的torch环境下(torch)。

在这里插入图片描述

查看该环境下装了哪些工具包:conda list

在这里插入图片描述

下载pytorch:conda activate torch

下载官网:https://pytorch.org/

进入pytorch官网选择对应的一些选项,在最后一行会生成与之相对应的代码行,复制到终端窗口执行即可。

在这里插入图片描述

该命令行表示从pytorch下载前面四个工具包。

在这里插入图片描述

Q:如何解决下载速度过慢的问题?

由于这些网站的服务器都在国外,我们下载的话速度会非常慢,为了解决这个问题,国内有些大佬做了镜像网站,一段时间会专门去更新一次,所以换到镜像网站下载速度会大大提升。


清华源:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --set show_channel_urls true

中科大源:
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
conda config --set show_channel_urls yes

本次安装我们换清华源

在这里插入图片描述

换源后查看一下是否换源成功,channels表示下载通道,其中的网址都是清华源的网址,说明换源成功。

在这里插入图片描述

换掉原本的下载指令,去掉后面的 -c pytorch,表示从当前的清华源下载。

在这里插入图片描述

以下我们的pytorch虚拟环境以及一些工具包已经装好了。

在这里插入图片描述

在这里插入图片描述

退出当前虚拟环境,回到大厅:conda deactivate

在这里插入图片描述

查看当前anconda中都有哪些虚拟环境:conda info -e

表示此时处于大厅位置。

在这里插入图片描述

在pytorch环境下编写测试代码

首先进入pytorch虚拟环境

在这里插入图片描述

输入命令行import torch,若出现以下标志,说明pytorch已经安装好。

在这里插入图片描述

3. conda常用指令

 创建一个虚拟环境


conda create -n torch[虚拟环境名]  python = 3.7

激活并进入该环境


conda activate torch

查看该环境下装了哪些工具包


conda list

退出当前虚拟环境,回到大厅


conda deactivate

查看当前anconda中都有哪些虚拟环境


conda info -e

删掉该环境中的所有内容,并且销毁该环境


(base) conda remove -n torch --all

pycahrm / jupyter

下载安装

下载社区版的pycharm,修改安装路径为空闲磁盘。没有什么需要特别注意的,直接下一步即可。

在这里插入图片描述 

如何建好的虚拟环境的解释器找出来指派给代码?

我们可以创建多个虚拟环境,比如tensorflow,pytorch等,在用不同的框架时通过下面的设置切换到不同的虚拟环境即可。也有人会把所有的框架等装到一个虚拟环境中,当然理论上也是可以的,只是不方便管理,而且同一个虚拟环境下是不允许安装同一个工具的不同版本,这就非常不利于我们后续的学习。
具体操作如下:

在这里插入图片描述

在这里插入图片描述

pycharm中运行以下代码测试,若出现以下结果,说明环境搭建完成。
如果下图第二行显示为false,有可能是电脑显卡不支持cuda,只需删除该虚拟环境,重新下载cpu版本的pytorch即可。

在这里插入图片描述


import torch

print(torch.__version__)
print(torch.cuda.is_available())

x = torch.randn(1)
if torch.cuda.is_available():
    device = torch.device("cuda")
    y = torch.ones_like(x, device=device)
    x = x.to(device)
    z = x + y
    print(z)
    print(z.to("cpu", torch.double))

到此这篇关于深度学习环境搭建anaconda+pycharm+pytorch的方法步骤的文章就介绍到这了,更多相关anaconda+pycharm+pytorch环境搭建内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

深度学习环境搭建anaconda+pycharm+pytorch的方法步骤

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

tensorflow基于Anaconda环境搭建的方法步骤

本文主要介绍了tensorflow基于Anaconda环境搭建的方法步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2023-02-28

MacOS Pytorch 机器学习环境搭建方法

这篇文章主要介绍了MacOS Pytorch 机器学习环境搭建,学习Pytorch ,首先要搭建好环境,这里将采用 Anoconda+Pytorch+PyCharm来一起构建Pytorch学习环境,需要的朋友可以参考下
2023-02-21

Docker AIGC等大模型深度学习环境搭建步骤最新详细版

这篇文章主要介绍了Docker AIGC等大模型深度学习环境搭建步骤最新详细版,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-18

Spring学习之开发环境搭建的详细步骤

最近搞定了项目,工作终于松了下来,顺便有时间学习Spring框架,记录于此,不足之处,希望大家不吝赐教Spring的介绍Spring是一个轻量级的Java框架,由于Spring基本提供了全套的开发服务,所以Spring基本上可以应用在Jav
2023-05-31

ubuntu 20.04上搭建LNMP环境的方法步骤

简单说明 由于之前是用Centos7搭建的,后来使用ubuntu 20.04的系统做为个人开发环境,所以想在ubuntu上也搭建一下环境,和Centos有一些小区别所以记录一下仅供学习。 安装前准备 下载软件: php:7.3.18 ngi
2022-06-04

使用VirtualBox和Vagrant搭建Linux环境的方法步骤

目录一、确定电脑的CPU开启CPU虚拟化二、下载VirturalBox并完成安装三、下载Vagrant并完成安装,并且电脑要重启四、在cmd中运行:vagrant五、修改VirtualBox全局下载位置六、生成Vagrantfile文件七、
2022-06-05

Mac Apple Silicon M1/M2 homebrew miniforge conda pytorch yolov5深度学习环境搭建并简单测试MPS GPU加速

目录 开始安装零,获取代理一,配置代理配置zsh走代理配置git走代理 二,安装homebrew三,安装miniforge四,创建conda环境五,安装pytorch六,运行yolov5六,测试Apple Silicon的MP
2023-08-19

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录