我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python遍历迭代器自动链式处理数据的实例代码

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python遍历迭代器自动链式处理数据的实例代码

python遍历迭代器自动链式处理数据

pytorch.utils.data可兼容迭代数据训练处理,在dataloader中使用提高训练效率:借助迭代器避免内存溢出不足的现象、借助链式处理使得数据读取利用更高效(可类比操作系统的资源调控)

书接上文,使用迭代器链式处理数据,在Process类的__iter__方法中执行挂载的预处理方法,可以嵌套包裹多层处理方法,类似KoaJs洋葱模型,在for循环时,自动执行预处理方法返回处理后的数据

分析下述示例中输入数据依次执行顺序:travel -> deep -> shuffle -> sort -> batch,实际由于嵌套循环或设置缓存的存在,数据流式会有变化,具体如后图分析

from torch.utils.data import IterableDataset
# ...

import random

class Process(IterableDataset):
    def __init__(self, data, f):
        self.data = data
        # 绑定处理函数
        self.f = f   
    def __iter__(self):
        # for循环遍历时,返回一个当前环节处理的迭代器对象
        return self.f(iter(self.data)) 

a = ['a0', 'a1', 'a2', 'a3', 'a4', 'a5', 'a6', 'a7', 'a8', 'a9']
b = ['b0', 'b1', 'b2', 'b3', 'b4', 'b5', 'b6', 'b7', 'b8', 'b9']
c = ['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9']
# data = [[j + str(i) for i in range(10)] for j in ['a','b', 'c'] ]
data = [a, b, c]
def travel(d):
    for i in d:
        # print('travel ', i)
        yield i
def deep(d):
    for arr in d:
        for item in arr:
            yield item

def shuffle(d, sf_size=5):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= sf_size:
            random.shuffle(buf)
            for j in buf:
                # print('shuffle', j)
                yield j
            buf = []
    for k in buf:
        yield k

def sort(d):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= 3:
            for i in buf:
                # print('sort', i)
                yield i
            buf = []
    for k in buf:
        yield k

def batch(d):
    buf = []
    for i in d:
        buf.append(i)
        if len(buf) >= 16:
            for i in buf:
                # print('batch', i)
                yield i
            buf = []
# 对训练数据进行的多个预处理步骤
dataset = Process(data, travel)
dataset = Process(dataset , deep)
dataset = Process(dataset , shuffle)
dataset = Process(dataset , sort)
train_dataset = Process(p, batch)

# 可在此处断点测试
for i in p:
    print(i, 'train')

# train_data_loader = DataLoader(train_dataset,num_workers=args.num_workers,prefetch_factor=args.prefetch)
# train(model , train_data_loader)

由上可以构造数据流式方向 :batch(iter(sort(iter(shuffle(iter(deep(iter(travel(iter( d ))))))))))

根据数据流式抽取部分过程画出时序图如下:

附:python 手动遍历迭代器

想遍历一个可迭代对象中的所有元素,但是却不想使用for 循环

为了手动的遍历可迭代对象,使用next() 函数并在代码中捕获StopIteration 异常。比如,下面的例子手动读取一个文件中的所有行

def manual_iter():
    with open('/etc/passwd') as f:
        try:
            while True:
                line = next(f)
                print(line, end='')
        except StopIteration:
            pass

通常来讲, StopIteration 用来指示迭代的结尾。然而,如果你手动使用上面演示的next() 函数的话,你还可以通过返回一个指定值来标记结尾,比如None 。下面是示例:

with open('/etc/passwd') as f:
    while True:
        line = next(f)
        if line is None:
            break
    print(line, end='')

大多数情况下,我们会使用for 循环语句用来遍历一个可迭代对象。但是,偶尔也需要对迭代做更加精确的控制,这时候了解底层迭代机制就显得尤为重要了。下面的交互示例向我们演示了迭代期间所发生的基本细节:

>>> items = [1, 2, 3]
>>> # Get the iterator
>>> it = iter(items) # Invokes items.__iter__()
>>> # Run the iterator
>>> next(it) # Invokes it.__next__()
1
>>> next(it)
2
>>> next(it)
3
>>> next(it)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
>>>

总结

到此这篇关于python遍历迭代器自动链式处理数据的文章就介绍到这了,更多相关python自动链式处理数据内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python遍历迭代器自动链式处理数据的实例代码

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python遍历迭代器自动链式处理数据的代码怎么写

python遍历迭代器自动链式处理数据的代码怎么写,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。python遍历迭代器自动链式处理数据pytorch.utils.data可兼容
2023-06-26

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录