我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python实现CSF地面点滤波算法原理解析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python实现CSF地面点滤波算法原理解析

一、算法原理

布料模拟滤波处理流程:
1)利用点云滤波算法或者点云处理软件滤除异常点;
2)将激光雷达点云倒置;
3)设置模拟布料,设置布料网格分辨率 G R GR GR,确定模拟粒子数。布料的位置设置在点云最高点以上;
4)将布料模拟点和雷达点投影到水平面,为每个布料模拟点找到最相邻的激光点的高度值,将高度值设置为 I H V IHV IHV;
5)布料例子设置为可移动,布料粒子首先受到重力作用,当粒子高度 C H V CHV CHV小于 I H V IHV IHV时,将粒子高度设置为 I H V IHV IHV;粒子设置为不可移动;
6)计算布料粒子之间的内力作用,根据设置的布料刚性参数,调整布料粒子之间的相对位置;
7)重复进行5)和6)计算,迭代次数达到设置的最大迭代次数;
8)计算激光雷达点与对应布料模拟点的距离,距离小于阈值标记为地面点,距离大于阈值标记为非地面点。

点云地面点滤波(Cloth Simulation Filter, CSF)“布料”滤波算法介绍

二、读取las点云

参考链接: python读取las
1、GitHub: laspy
2、基础教程:Laspy: Documentation
3、安装:pip install laspy
4、使用example:


import laspy
#============读取las格式的点云===========
inFile = laspy.file.File(r"40m1.las", mode='r') # 读取点云
print('X,Y,Z',inFile.x,inFile.y,inFile.z) # 输出点云坐标
print('点云个数:',len(inFile)) #读取点云个数
#============保存点云为las文件===========
h = inFile.header
outFile = laspy.file.File('666.las', mode = "w", header=h)
points = inFile #对点云进行的相关操作
outFile.points = points
outFile.close() #关闭文件完成保存

三、算法源码

1、算法细节:CSF
2、源码获取:https://github.com/jianboqi/CSF
3、源码编译:下载源代码。在python文件夹下:
python setup.py build
python setup.py install
4、读取las并可视化算法结果


import laspy
import CSF
import numpy as np
import open3d as o3d
#============读取las文件=============
inFile = laspy.file.File(r"40m1.las", mode='r') # read a las file
points = inFile.points
xyz = np.vstack((inFile.x, inFile.y, inFile.z)).transpose() # extract x, y, z and put into a list
#============布料模拟滤波============
csf = CSF.CSF()
# 参数设置
csf.params.bSloopSmooth = False    #粒子设置为不可移动
csf.params.cloth_resolution = 0.1  #布料网格分辨率
csf.params.rigidness = 3  #布料刚性参数
csf.params.time_step = 0.65
csf.params.class_threshold = 0.03 #点云与布料模拟点的距离阈值
csf.params.interations = 500      #最大迭代次数
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/
csf.setPointCloud(xyz)
ground = CSF.VecInt()  # 地面点索引列表
non_ground = CSF.VecInt() # 非地面点索引列表
csf.do_filtering(ground, non_ground) # 执行滤波
#============保存为las文件==========
outFile = laspy.file.File(r"non_ground.las",
                          mode='w', header=inFile.header)
outFile.points = points[non_ground] # 提取非地面点保存到las
outFile.close() # 关闭文件夹

a=xyz[ground]
b=xyz[non_ground]
#=============可视化===============
def view_cloud(a, b):
    pcd = o3d.geometry.PointCloud()
    # =====numpy转point=======
    pcd.points = o3d.utility.Vector3dVector(a)

    pcd1 = o3d.geometry.PointCloud()

    pcd1.points = o3d.utility.Vector3dVector(b)
    #=======自定义颜色========
    pcd.paint_uniform_color([0, 1, 0])
    pcd1.paint_uniform_color([1, 0, 0])
    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')
    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')
    o3d.visualization.draw_geometries([pcd],window_name='地面点')
view_cloud(a,b)

5、读取pcd文件并可视化结果


import open3d as o3d
import CSF
import numpy as np

pc = o3d.io.read_point_cloud("数据//100m1.pcd")
xyz = np.asarray(pc.points)
csf = CSF.CSF()
# prameter settings
csf.params.bSloopSmooth = False
csf.params.cloth_resolution = 0.1
csf.params.rigidness = 3
csf.params.time_step = 0.65
csf.params.class_threshold = 0.03
csf.params.interations = 500
# more details about parameter: http://ramm.bnu.edu.cn/projects/CSF/download/
csf.setPointCloud(xyz)
ground = CSF.VecInt()  # a list to indicate the index of ground points after calculation
non_ground = CSF.VecInt() # a list to indicate the index of non-ground points after calculation
csf.do_filtering(ground, non_ground) # do actual filtering.

# o3d.io.write_point_cloud("trans_of_source.pcd", non_ground)#保存点云
a=xyz[ground]
b=xyz[non_ground]
def view_cloud(a, b):
    pcd = o3d.geometry.PointCloud()
    # From numpy to Open3D
    pcd.points = o3d.utility.Vector3dVector(a)

    pcd1 = o3d.geometry.PointCloud()
    # From numpy to Open3D
    pcd1.points = o3d.utility.Vector3dVector(b)

    pcd.paint_uniform_color([0, 1, 0])
    pcd1.paint_uniform_color([1, 0, 0])
    o3d.visualization.draw_geometries([pcd, pcd1],window_name='提取结果')
    o3d.visualization.draw_geometries([pcd1],window_name='非地面点')
    o3d.visualization.draw_geometries([pcd],window_name='地面点')
view_cloud(a,b)

四、结果展示

五、CloudCompare实现

1、加载点云数据,点击Plugins中的CSF Filter功能

2、弹出如下窗口:



 图中:Cloth resolution:是指用于覆盖地形的布的网格大小(单位与点云的单位相同)。你设置的布分辨率越大,你得到的DTM就越粗糙;Max iterations:是指地形仿真的最大迭代次数。500对大多数场景来说都足够了。Classification threshold:是指根据点与模拟地形之间的距离,将点云划分为地面和非地面部分的阈值。0.5适用于大多数场景
  这里的网格分辨率和距离阈值最小只能设置为10cm,地面10cm的范围默认是地面点,精确度不如自己代码实现中的高。
3、最后得到的结果:

可以看出,非地面点中不能提取到路缘石。

到此这篇关于python实现CSF地面点滤波的文章就介绍到这了,更多相关python地面点滤波内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python实现CSF地面点滤波算法原理解析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python怎么实现CSF地面点滤波算法

这篇文章主要讲解了“python怎么实现CSF地面点滤波算法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么实现CSF地面点滤波算法”吧!目录一、算法原理二、读取las点云三、
2023-06-20

深入解析BFS算法原理,带图解说明,并附带Python代码实现BFS算法

BFS又名广度优先搜索,和DFS算法一样都是递归算法,不同的是,BFS算法通过队列,在避免循环的同时遍历目标所有节点。BFS算法的工作原理图解以具有5个节点的无向图为例,如下图:从节点0开始,BFS算法首先将其放入Visited列表并将
深入解析BFS算法原理,带图解说明,并附带Python代码实现BFS算法
2024-01-23

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录