我的编程空间,编程开发者的网络收藏夹
学习永远不晚

深入理解NumPy简明教程---数组1

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

深入理解NumPy简明教程---数组1

目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程中,我发现当今中文NumPy教程大部分都是翻译或参考英文文档,因此导致了许多疏漏。比如NumPy数组中的broadcast功能,几乎所有中文文档都翻译为“广播”。而NumPy的开发者之一,回复到“broadcast is a compound -- native English speakers can see that it's " broad" + "cast" = "cast (scatter, distribute) broadly, I guess "cast (scatter, distribute) broadly" probably is closer to the meaning(NumPy中的含义)"。有鉴于此,我打算启动一个项目,以我对NumPy使用以及源码层面的了解编写一个系列的教程。

NumPy数组

NumPy数组是一个多维数组对象,称为ndarray。其由两部分组成:

实际的数据 描述这些数据的元数据

大部分操作仅针对于元数据,而不改变底层实际的数据。

关于NumPy数组有几点必需了解的:

NumPy数组的下标从0开始。 同一个NumPy数组中所有元素的类型必须是相同的。

NumPy数组属性

在详细介绍NumPy数组之前。先详细介绍下NumPy数组的基本属性。NumPy数组的维数称为秩(rank),一维数组的秩为1,二维数组的秩为2,以此类推。在NumPy中,每一个线性的数组称为是一个轴(axes),秩其实是描述轴的数量。比如说,二维数组相当于是两个一维数组,其中第一个一维数组中每个元素又是一个一维数组。所以一维数组就是NumPy中的轴(axes),第一个轴相当于是底层数组,第二个轴是底层数组里的数组。而轴的数量——秩,就是数组的维数。

NumPy的数组中比较重要ndarray对象属性有:

ndarray.ndim:数组的维数(即数组轴的个数),等于秩。最常见的为二维数组(矩阵)。 ndarray.shape:数组的维度。为一个表示数组在每个维度上大小的整数元组。例如二维数组中,表示数组的“行数”和“列数”。ndarray.shape返回一个元组,这个元组的长度就是维度的数目,即ndim属性。 ndarray.size:数组元素的总个数,等于shape属性中元组元素的乘积。 ndarray.dtype:表示数组中元素类型的对象,可使用标准的Python类型创建或指定dtype。另外也可使用前一篇文章中介绍的NumPy提供的数据类型。 ndarray.itemsize:数组中每个元素的字节大小。例如,一个元素类型为float64的数组itemsiz属性值为8(float64占用64个bits,每个字节长度为8,所以64/8,占用8个字节),又如,一个元素类型为complex32的数组item属性为4(32/8)。 ndarray.data:包含实际数组元素的缓冲区,由于一般通过数组的索引获取元素,所以通常不需要使用这个属性。

创建数组

先来介绍创建数组。创建数组的方法有很多。如可以使用array函数从常规的Python列表和元组创造数组。所创建的数组类型由原序列中的元素类型推导而来。   


>>> from numpy import *     
>>> a = array( [2,3,4] )    
>>> a 
  array([2, 3, 4]) 
>>> a.dtype 
  dtype('int32') 
>>> b = array([1.2, 3.5, 5.1])    
>>> b.dtype 
  dtype('float64') 

使用array函数创建时,参数必须是由方括号括起来的列表,而不能使用多个数值作为参数调用array。   


>>> a = array(1,2,3,4)  # 错误 
>>> a = array([1,2,3,4]) # 正确 

可使用双重序列来表示二维的数组,三重序列表示三维数组,以此类推。


>>> b = array( [ (1.5,2,3), (4,5,6) ] )   
>>> b 
  array([[ 1.5, 2. , 3. ], 
      [ 4. , 5. , 6. ]]) 

可以在创建时显式指定数组中元素的类型


>>> c = array( [ [1,2], [3,4] ], dtype=complex) 
>>> c 
  array([[ 1.+0.j, 2.+0.j], 
     [ 3.+0.j, 4.+0.j]]) 

通常,刚开始时数组的元素未知,而数组的大小已知。因此,NumPy提供了一些使用占位符创建数组的函数。这些函数有助于满足除了数组扩展的需要,同时降低了高昂的运算开销。

用函数zeros可创建一个全是0的数组,用函数ones可创建一个全为1的数组,函数empty创建一个内容随机并且依赖与内存状态的数组。默认创建的数组类型(dtype)都是float64。

可以哟娜特d.dtype.itemsize来查看数组中元素占用的字节数目。


>>> d = zeros((3,4)) 
>>> d.dtype 
dtype('float64') 
>>> d 
array([[ 0., 0., 0., 0.], 
    [ 0., 0., 0., 0.], 
    [ 0., 0., 0., 0.]]) 
>>> d.dtype.itemsize 
8 

也可以自己制定数组中元素的类型


>>> ones( (2,3,4), dtype=int16 ) #手动指定数组中元素类型 
   array([[[1, 1, 1, 1], 
       [1, 1, 1, 1], 
       [1, 1, 1, 1]], 
    
       [[1, 1, 1, 1], 
       [1, 1, 1, 1], 
       [1, 1, 1, 1]]], dtype=int16) 
>>> empty((2,3)) 
   array([[ 2.65565858e-316,  0.00000000e+000,  0.00000000e+000], 
       [ 0.00000000e+000,  0.00000000e+000,  0.00000000e+000]]) 

NumPy提供一个类似arange的函数返回一个数列形式的数组:


>>> arange(10, 30, 5) 
  array([10, 15, 20, 25]) 

以10开始,差值为5的等差数列。该函数不仅接受整数,还接受浮点参数: 


>>> arange(0,2,0.5) 
  array([ 0. , 0.5, 1. , 1.5]) 

当arange使用浮点数参数时,由于浮点数精度有限,通常无法预测获得的元素个数。因此,最好使用函数linspace去接收我们想要的元素个数来代替用range来指定步长。linespace用法如下,将在通用函数一节中详细介绍。


>>> numpy.linspace(-1, 0, 5) 
    array([-1. , -0.75, -0.5 , -0.25, 0. ]) 

数组中的元素是通过下标来访问的,可以通过方括号括起一个下标来访问数组中单一一个元素,也可以以切片的形式访问数组中多个元素。关于切片访问,将在切片一节介绍。

知识点:NumPy中的数据类型

对于科学计算来说,Python中自带的整型、浮点型和复数类型远远不够,因此NumPy中添加了许多数据类型。如下:

NumPy中的基本数据类型

NumPy中的基本数据类型 名称 描述 bool 用一个字节存储的布尔类型(True或False) inti 由所在平台决定其大小的整数(一般为int32或int64) int8 一个字节大小,-128 至 127 int16 整数,-32768 至 32767 int32 整数,-2 ** 31 至 2 ** 32 -1 int64 整数,-2 ** 63 至 2 ** 63 - 1 uint8 无符号整数,0 至 255 uint16 无符号整数,0 至 65535 uint32 无符号整数,0 至 2 ** 32 - 1 uint64 无符号整数,0 至 2 ** 64 - 1 float16 半精度浮点数:16位,正负号1位,指数5位,精度10位 float32 单精度浮点数:32位,正负号1位,指数8位,精度23位 float64或float 双精度浮点数:64位,正负号1位,指数11位,精度52位 complex64 复数,分别用两个32位浮点数表示实部和虚部 complex128或complex 复数,分别用两个64位浮点数表示实部和虚部

NumPy类型转换方式如下:


>>> float64(42) 
  42.0 
>>> int8(42.0) 
  42 
>>> bool(42) 
  True 
>>> bool(42.0) 
  True 
>>> float(True) 
  1.0 

许多函数的参数中可以指定参数的类型,当然,这个类型参数是可选的。如下:


>>> arange(7, dtype=uint16) 
  array([0, 1, 2, 3, 4, 5, 6], dtype=uint16) 

输出数组

当输出一个数组时,NumPy以特定的布局用类似嵌套列表的形式显示:

第一行从左到右输出 每行依次自上而下输出 每个切片通过一个空行与下一个隔开 一维数组被打印成行,二维数组成矩阵,三维数组成矩阵列表。 

>>> a = arange(6)             # 1d array 
>>> print a 
  [0 1 2 3 4 5] 
    
>>> b = arange(12).reshape(4,3)      # 2d array 
>>> print b 
  [[ 0 1 2] 
  [ 3 4 5] 
  [ 6 7 8] 
  [ 9 10 11]]    
>>> c = arange(24).reshape(2,3,4)     # 3d array 
>>> print c 
  [[[ 0 1 2 3] 
  [ 4 5 6 7] 
  [ 8 9 10 11]] 
    
  [[12 13 14 15] 
  [16 17 18 19] 
  [20 21 22 23]]] 

reshape将在下一篇文章中介绍 

如果一个数组太长,则NumPy自动省略中间部分而只打印两端的数据:   


>>> print arange(10000) 
   [  0  1  2 ..., 9997 9998 9999] 
    
>>> print arange(10000).reshape(100,100) 
   [[  0  1  2 ...,  97  98  99] 
    [ 100 101 102 ..., 197 198 199] 
    [ 200 201 202 ..., 297 298 299] 
    ..., 
    [9700 9701 9702 ..., 9797 9798 9799] 
    [9800 9801 9802 ..., 9897 9898 9899] 
    [9900 9901 9902 ..., 9997 9998 9999]] 

可通过设置printoptions参数来禁用NumPy的这种行为并强制打印整个数组。


set_printoptions(threshold='nan') 

这样,输出时数组的所有元素都会显示出来。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

深入理解NumPy简明教程---数组1

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

深入理解NumPy简明教程---数组1

目前我的工作是将NumPy引入到Pyston中(一款Dropbox实现的Python编译器/解释器)。在工作过程中,我深入接触了NumPy源码,了解其实现并提交了PR修复NumPy的bug。在与NumPy源码以及NumPy开发者打交道的过程
2022-06-04

深入理解NumPy简明教程---数组2

NumPy数组(2、数组的操作)基本运算数组的算术运算是按元素逐个运算。数组运算后将创建包含运算结果的新数组。>>> a= np.array([20,30,40,50]) >>> b= np.arange( 4) >>> b arra
2022-06-04

深入理解NumPy简明教程---数组3(组合)

前两篇文章对NumPy数组做了基本的介绍,本篇文章对NumPy数组进行较深入的探讨。首先介绍自定义类型的数组,接着数组的组合,最后介绍数组复制方面的问题。 自定义结构数组通过NumPy也可以定义像C语言那样的结构类型。在NumPy中定义结构
2022-06-04

深度解析numpy数组拼接的专家级教程

大师级教程:numpy数组拼接方法全面解析引言:在数据科学和机器学习领域中,numpy是最重要的工具之一。它是一个强大的Python库,提供了高性能的多维数组对象,以及处理这些数组的各种函数。在numpy中,数组之间的拼接是一项基本操作,
深度解析numpy数组拼接的专家级教程
2024-01-26

深入理解numpy数组的拼接方法及用途

一文读懂numpy数组拼接方法及应用场景概述:在数据处理和分析中,常常需要将多个numpy数组进行拼接,以便进行进一步的处理和分析。numpy库提供了多种数组拼接的方法,本文将介绍numpy数组的拼接方法及其应用场景,并给出具体的代码示例
深入理解numpy数组的拼接方法及用途
2024-01-26

优化数据处理的方法,深入解析numpy数组拼接

numpy是Python中用于数值计算的重要库之一,它提供了丰富的数学函数和高效的数组操作,使得数据处理变得更加高效和简洁。在numpy中,数组拼接是常见的操作之一,本文将详细介绍numpy中的数组拼接方法,并给出具体的代码示例。一、数组
优化数据处理的方法,深入解析numpy数组拼接
2024-01-26

DDL数据库与表的创建和管理深入讲解使用教程

目录一、基本概念二、创建和管理数据库1、创建数据库2、管理数据库3、修改数据库4、删除数据库三、创建和管理表1、创建表2、修改表3、重命名表4、删除表5、清空表四、DCL中的COMMIT和ROLLBACK1、commit2、rollback
2023-04-19

深入了解 MySQL:为有抱负的数据库管理员提供的综合教程

您是一名有抱负的数据库管理员,希望扩展您的 mysql 技能吗?别再犹豫了!我们从 labex 精选了 8 个综合教程,涵盖了广泛的基本数据库管理主题。 ?从掌握索引、备份和恢复等基本操作,到探索用户权限管理和 SQL 查询等高级概念,该合
深入了解 MySQL:为有抱负的数据库管理员提供的综合教程
2024-08-12

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录