我的编程空间,编程开发者的网络收藏夹
学习永远不晚

数字信号处理8:利用Python进行数字信号处理基础

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

数字信号处理8:利用Python进行数字信号处理基础

我前两天买了本MATLAB信号处理,但是很无语,感觉自己对MATLAB的语法很陌生,看了半天也觉得自己写不出来,所以就对着MATLAB自己去写用Python进行的数字信号处理基础,我写了两天左右,基本上把matlab书上的代码全部用Python实现了,所以,今天贴的代码和图有些多,

要用到的包:

Scipy包:其中signal库,这个库是真的绝,很多信号处理的基础函数都有的,

numpy包:numpy包中也有很多进行信号处理的,比如说相关、卷积,都有相关函数

mmatplotlib包:这就不多说了,信号处理就是用它来展示的,这里主要用到的就是stem方法。

signal库我找了一下,csdn有个博主总结的很全,这是他的博客链接,可以看一看:

(1条消息) scipy.signal信号处理的库(笔记06)_scipy.signalku_月疯的博客-CSDN博客

然后,还可以看一下scipy官方的文档,里面也有很详细的介绍:

Signal processing (scipy.signal) — SciPy v1.10.1 Manual

这里我做了个目录,可以查看相应的方法:

目录

1、离散时间信号序列的表示:

 2、采样定理:

 3、简单离散信号序列:

 4、单位阶跃函数:

5、正弦信号序列:

6、实指数序列:

 7、复指数序列:

8、序列值累加和乘积:

9、序列反转、移位:

 10、信号的尺度变换:

 11、连续信号的奇偶分解:

12、奇函数和偶函数合并:

13、信号的微积分:

 14、积分:

15、卷积运算和相关计算

16、产生信号波形:

 17、连续矩形周期信号采样变成离散信号:

 18、随机函数,这个用numpy就可以直接生成:

 19、三角波,用signal的sawtooth:

 20、sinc曲线:

21、生成非周期三角波

 22、高斯脉冲的实现:

 23、脉冲序列发生器:

24、产生非周期方波:

25、连续时间信号的时域分析

(1)零状态响应:

 (2)冲激响应和阶跃响应:

 (3)各种信号的响应:

(4)连续时间信号的卷积:

26、离散时间系统:

27、离散时间系统的冲激和阶跃响应:

 28、卷积和运算,这都不用说啥了,前面都说过了:

 29、相关序列(自相关、互相关):


1、离散时间信号序列的表示:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalN=np.linspace(-3,11,15,dtype=int)x=np.array([0,2,3,3,2,3,0,-1,-2,-3,-4,-5,1,2,1])dt=0.01n=N*dtfig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.stem(N,x)ax2=fig.add_subplot(2,1,2)ax2.plot(n,x)ax2.plot(n,np.zeros(len(n)))

 2、采样定理:

#用10hz的采样频率采样import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaldt=0.01n=np.linspace(0,89,90,dtype=int)t=n*dtf=10x=np.sin(3*np.pi*f*t+0.5)#原始信号dt=0.1n=np.linspace(0,9,10,dtype=int)t1=n*dtx1=np.sin(3*f*np.pi*t1+0.5)# 采样后的信号fig1=plt.figure()ax1=fig1.add_subplot(3,1,1)ax1.plot(t,x)ax1.set_title('origional signal')ax2=fig1.add_subplot(3,1,2)ax2.plot(t,x)ax2.plot(t1,x1,'*')ax2.set_title('Sampling process')ax3=fig1.add_subplot(3,1,3)ax3.plot(t1,x1)ax3.set_title('Sampling signal')plt.show()

 3、简单离散信号序列:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaln=50x=np.zeros(n)x[1]=1xn=np.linspace(0,n-1,n,dtype=int)fig1=plt.figure()ax1=fig1.add_subplot(2,1,1)ax1.stem(xn,x)x[1]=0x[10]=1ax2=fig1.add_subplot(2,1,2)ax2.stem(xn,x)plt.show()

 4、单位阶跃函数:

这个我没有在signal里找到,但是我自己写了一个:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaldef u(n):    if n>=0:        r=1    else:        r=0    return rx=np.linspace(-10,10,21,dtype=int)y=np.array([u(i)for i in x])plt.stem(x,y)plt.show()

 很简单的,最简单的是递增序列,就是一个递增函数就行,比如说上面的x,他就是个递增序列:

plt.stem(x,x,'r')

 蓝色的就是刚才的阶跃序列,

5、正弦信号序列:

这个也很简单,延续上面的代码:

# x=np.linspace(-10,10,21,dtype=int)# z=np.linspace(-10,10,10000,dtype=float)plt.stem(x,np.sin(x))plt.plot(z,np.sin(z),'r')plt.show()

 可以看到,红色的连续信号和蓝色棉签棒的离散信号。

6、实指数序列:

numpy的power函数可以很简单的实现:

x(n)=a^nu(n)

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalimport sympy as syn=np.linspace(-10,10,21,dtype=int)y1=np.power(1.6,n)y2=np.power(-1.6,n)y3=np.power(0.9,n)y4=np.power(-0.9,n)f=plt.figure()ax1=f.add_subplot(2,2,1)ax1.stem(n,y1)ax2=f.add_subplot(2,2,2)ax2.stem(n,y2)ax3=f.add_subplot(2,2,3)ax3.stem(n,y3)ax4=f.add_subplot(2,2,4)ax4.stem(n,y4)ax1.set_title('1.6^n')ax2.set_title('(-1.6)^n')ax3.set_title('0.9^n')ax4.set_title('(-0.9)^n')plt.show()

 7、复指数序列:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalimport cmathn=np.linspace(0,50,51,dtype=complex)A=3a=-1/9b=np.pi/5h=-1/9+np.pi/5jx=A*np.exp(h*n)f=plt.figure()ax1=f.add_subplot(2,2,1)ax1.stem(n,x.real)ax2=f.add_subplot(2,2,2)ax2.stem(n,x.imag)ax3=f.add_subplot(2,2,3)ax3.stem(n,abs(x))ax4=f.add_subplot(2,2,4)y=np.array([-cmath.phase(i) for i in x])#如果直接用phase的话,和matlab计算的angle是相反的,所以我这里为了和matlab一样,就用了-phaseax4.stem(n,y)ax1.set_title('real')ax2.set_title('imag')ax3.set_title('abs')ax4.set_title('angle')plt.show()

8、序列值累加和乘积:

这个就是常规的numpy操作,没啥意思

9、序列反转、移位:

反转的话,可以用[::-1]或者也可以用y=np.flipud(x),两者是一样的效果,信号移位就是,在一个信号序列前面或者后面加一个全零数组,前面加就是延迟,后面加就是提前:

# matlab中有一个函数较fliplr(x)来进行序列反转,但是,python会比这个更简单:两种方法:第一种是用列表反转的形式,第二种是用numpy的flipud函数执行import numpy as npimport matplotlib.pyplot as pltnx=np.linspace(-2,5,8,dtype=int)x=np.linspace(2,9,8,dtype=int)ny=-np.flipud(nx)y=np.flipud(x)print(ny)print(y)# ny=-nx[::-1]# y=x[::-1]fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.stem(nx,x,'.')ax1.axis([-6,6,-1,9])ax1.grid(visible=True)ax1.set_xlabel('n')ax1.set_ylabel('x(n)')ax1.set_title('origional sequence')ax2=fig.add_subplot(2,1,2)ax2.stem(ny,y,'.')ax2.axis([-6,6,-1,9])ax2.grid(visible=True)ax2.set_xlabel('n')ax2.set_ylabel('y(n)')ax2.set_title('Inversion sequence')plt.show()

#序列位移:import matplotlib.pyplot as pltimport numpy as npnx=np.linspace(-2,5,8,dtype=int)x=np.array([9,8,7,6,5,5,5,5])y=xny1=nx+3ny2=nx-2fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.stem(nx,x,'.')ax1.axis([-5,9,-1,10])ax1.grid(visible=True)ax1.set_xlabel('n')ax1.set_ylabel('x(n)')ax1.set_title('origional sequence')ax2=fig.add_subplot(2,2,3)ax2.stem(ny1,y,'.')ax2.axis([-5,9,-1,10])ax2.grid(visible=True)ax2.set_xlabel('n')ax2.set_ylabel('y1(n)')ax2.set_title('y1=(n+3)')ax3=fig.add_subplot(2,2,4)ax3.stem(ny2,y,'.')ax3.axis([-5,9,-1,10])ax3.grid(visible=True)ax3.set_xlabel('n')ax3.set_ylabel('y2(n)')ax3.set_title('y2=(n-2)')plt.show()

 10、信号的尺度变换:

把信号的横坐标压缩或者扩展:

t = np.linspace(-4, 4, 8000, dtype=float)T = 2f = np.zeros((8000),dtype=float)t1=2*tf1=np.zeros((8000),dtype=float)for i in range(len(t)):    if ((-1 <= t[i]) & (t[i] <= 1)).any():        f[i] = 1for i in range(len(t1)):    if ((-0.5 <= t1[i]) & (t1[i] <= 0.5)).any():        f1[i] = 1fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.plot(t,f)ax1.axis([-4,4,-0.5,1.5])ax2=fig.add_subplot(2,1,2)ax2.plot(t1,f1)ax2.axis([-4,4,-0.5,1.5])plt.show()

 11、连续信号的奇偶分解:

我们都知道,一个信号可以分解成一个偶分量和一个奇分量:

f(t)=\frac{1}{2}[f(t)+f(-t)]+\frac{1}{2}[f(t)-f(-t)]

#连续信号的奇偶分解:#对于一个信号f(n)来说,奇信号:1/2[f(t)-f(-t)]偶信号:1/2[f(t)+f(-t)]t=np.linspace(-8,8,100000)f=np.cos(t+1)+tf1=np.cos(-t+1)-tg=1/2*(f+f1)h=1/2*(f-f1)fig=plt.figure()ax1=fig.add_subplot(3,1,1)ax1.plot(t,f)ax1.set_title('origional signal')ax2=fig.add_subplot(3,1,2)ax2.plot(t,g)ax2.set_title('odd signal')ax3=fig.add_subplot(3,1,3)ax3.plot(t,h)ax3.set_title('even signal')

12、奇函数和偶函数合并:

还是上面的

#将上面的两个奇偶分量合并成原函数:就是反向操作一波,也可以用g-ht=np.linspace(-8,8,100000)f=np.cos(t+1)+tf1=np.cos(-t+1)-tg=1/2*(f+f1)h=1/2*(f-f1)z=g+hl=h-gfig=plt.figure()ax1=fig.add_subplot(4,1,3)ax1.plot(t,z)ax1.set_title('origional signal')ax1=fig.add_subplot(4,1,4)ax1.plot(t,l)ax1.set_title('origional signal')ax2=fig.add_subplot(4,1,1)ax2.plot(t,g)ax2.set_title('odd signal')ax3=fig.add_subplot(4,1,2)ax3.plot(t,h)ax3.set_title('even signal')

 多画了一个原函数,将就着看吧

13、信号的微积分:

这个里面有一个heaviside函数,matlab有,但是python没有,然后我就把它自己实现了,要用的可以直接用:

import matplotlib.pyplot as pltimport numpy as npimport sympy as spfrom scipy import signalimport sympy.plotting as sypdef heaviside(x):    if x==0:          r=0.5    elif x>0:          r=1    elif x<0:          r=0    return r#本来要用的,但我们没有用heaviside函数t=sp.symbols('t')f=sp.Function('f')(t)f=t*t+2*t-1f1=f.diff(t)#一阶导f2=f.diff(t,t)#二阶导f3=f.diff(t,t,t)#三阶导syp.plot(f,f1,f2,f3,(t,-1,2))

 14、积分:

这里用的是:

import sympy as syt,f=sy.symbols('t,f')f=2*t+2intt=sy.integrate(f,t)print(intt)syp.plot(intt,(t,-7,5))

 当然,微积分这里比较水,以为找个很好看的函数很麻烦

15、卷积运算和相关计算

连续信号和离散信号都一样,我们可以用numpy中的convolve函数,singal中也有这个函数,直接计算就可以,这里给例子:y(n)=x(n)*h(n)

#离散时间信号的卷积和运算import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaldef uDt(n):    if n>=0:        y=1    else:        y=0    return ynx=np.linspace(-1,5,7,dtype=int,endpoint=True)nh=np.linspace(-2,10,13,dtype=int,endpoint=True)nx2=nx-4nh2=nh-9x=np.array([uDt(i)for i in nx])-np.array([uDt(i)for i in nx2])h=np.power(0.9,nh)h1=np.array([uDt(i)for i in nh])-np.array([uDt(i)for i in nh2])y=np.convolve(h,h1)ny1=nx[0]+nh[0]ny=ny1+np.linspace(0,(len(y)),len(y),dtype=int)fig=plt.figure()ax1=fig.add_subplot(3,1,1)ax1.stem(nx,x)ax1.grid(visible=True)ax1.set_title('x(n)')ax1.axis([-4,16,0,1.5])ax2=fig.add_subplot(3,1,2)ax2.stem(nh,h)ax2.grid(visible=True)ax2.set_title('h(n))')ax2.axis([-4,16,0,1.5])ax3=fig.add_subplot(3,1,3)ax3.stem(ny,y)ax3.set_title('y(n)')ax3.grid(visible=True)ax3.axis([-4,16,0,9])plt.show()

 然后相关序列计算,切记,千万不要和person系数混淆了,我先用person那个函数计算来着,后来发现是不对的,signal.correlate和np.correlate都可以完成相关计算:

#计算自相关和互相关import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalfrom scipy.stats import pearsonrx=np.array([1,3,5,7,9,11,13,15,17,19])y=np.array([1,1,1,1,2,2,2,2,2,2])# 计算自相关函数auto_corr = signal.correlate(x, x, mode='same')# 计算互相关函数cross_corr = signal.correlate(x, y, mode='same')# np.correlateprint("自相关函数:", auto_corr)print("互相关函数:", cross_corr)

这里就不放图了,没啥意思,就两个类似山峰的曲线,

16、产生信号波形:

from scipy import signal as signalt=np.linspace(0,1,200,dtype=float)# scipy.signal.chirp(t, f0, t1, f1, method='linear', phi=0, vertex_zero=True)h=signal.chirp(t,0,1,120,method='linear',phi=np.pi/3)#linear线性\quadratic二次扫描、logarithmic对数扫描(这时候f0、f1均不能为零)plt.plot(t,h)plt.grid(visible=True)plt.show()

我们这里用singal的chirp函数来生成波形,这里,产生的波形是时间轴为t,时刻0的瞬间频率是f0,时刻t1的瞬间频率是f1,method就是你可以产生波形的方法,phi就是相位,一般来说vertex_zero设置成缺省值就行。

来看一下:

 17、连续矩形周期信号采样变成离散信号:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalf=6000nt=3N=15T=1/fdt=T/Nn=np.linspace(0,50,51,dtype=int)tn=n*dtx=signal.square(2*f*np.pi*tn,duty=0.25)+1fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.step(tn,x,'k')ax1.axis([0,nt*T,1.2*min(x),1.1*max(x)])ax1.set_ylabel('x(t)')ax2=fig.add_subplot(2,1,2)ax2.stem(tn,x,'r')ax2.axis([0,nt*T,1.2*min(x),1.1*max(x)])ax2.set_ylabel('x(n)')plt.show()

 18、随机函数,这个用numpy就可以直接生成:

#生成随机函数:t=np.linspace(0,49,dtype=int)N=len(t)x=np.random.random(len(t))fig2=plt.figure()ax1=fig2.add_subplot(2,1,1)ax1.plot(t,x)ax1.set_xlabel('n')ax1.set_ylabel('x(n)')ax2=fig2.add_subplot(2,1,2)ax2.stem(t,x)ax2.set_xlabel('n')ax2.set_ylabel('x(n)')plt.show()

 19、三角波,用signal的sawtooth:

#生成三角波fs=10000t=np.linspace(0,1,fs,dtype=float)x1=signal.sawtooth(1*np.pi*40*t,0)x2=signal.sawtooth(1*np.pi*40*t,1)fig3=plt.figure()ax1=fig3.add_subplot(2,1,1)ax1.plot(t,x1)ax1.set_xlabel('n')ax1.set_ylabel('x(n)')ax1.axis([0,0.25,-1,1])ax2=fig3.add_subplot(2,1,2)ax2.plot(t,x2)ax2.set_xlabel('n')ax2.set_ylabel('x(n)')ax2.axis([0,0.25,-1,1])plt.show()

 20、sinc曲线:

t=np.linspace(-3*np.pi,4*np.pi,400,dtype=float)plt.plot(t,np.sinc(t))plt.show()

 但是,有一点我到现在还没想通,同样的sinc,用公式推到的和内置的,出来的效果就是不一样:

t=np.linspace(-10,10,10000,dtype=float)x=np.random.randint(len(t))y=np.sinc(t)y1=np.sin(t)# y2=np.divide(y1,t)y2=y1/tfig3=plt.figure()ax1=fig3.add_subplot(3,1,1)ax1.plot(t,y)ax2=fig3.add_subplot(3,1,2)ax2.plot(t,y1)ax3=fig3.add_subplot(3,1,3)ax3.plot(t,y2)ax3.plot(t,y,'r*')plt.show()#好奇怪啊,为什么,已知的是sinc(t)=sin(t)/t,但是我用这种方法做出来的,两个信号的宽度不一样from mayavi import mlabfrom mpl_toolkits.mplot3d import Axes3Dfig=plt.figure()z=np.linspace(-10,2500,10000,dtype=float).reshape(100,100)ax=fig.add_subplot(1,1,1, projection='3d')t2=t.reshape(100,100)x2=np.sinc(t2)ax.plot_surface(t2,x2,z,rstride=4,cstride=3,color='r',alpha=0.9)

 三维的我会展示另一幅,以为上面这个代码中的三维太难看了,

import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import Axes3D# 生成数据x = y = np.linspace(-10, 10, 100)X, Y = np.meshgrid(x, y)R = np.sqrt(X**2 + Y**2)# Z = np.sin(R) / Rz=np.sinc(R)# 绘制图像fig = plt.figure()ax = fig.add_subplot(111, projection='3d')ax.plot_surface(X, Y, z, cmap='coolwarm')plt.show()

 就这样吧

21、生成非周期三角波

这个利用自己写的函数生成一个就好:

#非周期三角波信号:t=np.linspace(-2,2,4000)def triangle_wave(x,c,hc): #幅度为hc,宽度为c,斜度为hc/2c的三角波    if x>=c/2:        r=0.0    elif x<=-c/2:        r=0.0    elif((x>-c/2)and(x<0)):        r=2*x/c*hc+hc    else:        r=-2*x/c*hc+hc    return rx=np.array([triangle_wave(i,0.5,0.5) for i in t ])plt.plot(t,x)plt.show()

 22、高斯脉冲的实现:

#高斯正弦脉冲:signal.gausspulse(t, fc=1000, bw=0.5, bwr=-6, tpr=-60, retquad=False,retenv=False):tc=signal.gausspulse('cutoff',60e3,0.6,tpr=-40)tG=np.linspace(-tc,tc,100000)y=signal.gausspulse(tG,60e3,0.6)plt.plot(tG,y)plt.show()

 23、脉冲序列发生器:

这个就是上面的square函数和sawtooth:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaln=np.linspace(0,10,dtype=float)h=signal.square(1*np.pi*40*n)z=signal.sawtooth(1*np.pi*40*n)fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.plot(n,h)ax1.set_title('square')ax2=fig.add_subplot(2,1,2)ax2.plot(n,z)ax2.set_title('sawtooth')plt.show()

24、产生非周期方波:

#产生非周期方波:matlab 中用的是rectpuls,python似乎还没有这个函数,但是可以自己实现,这是我复制的别人滴def rect_wave(x,c,c0):     #起点为c0,宽度为c的矩形波     if x>=(c+c0):          r=0.0     elif x

25、连续时间信号的时域分析

(注意,到这里就很注重系统的概念了)

就是求解齐次方程和非齐次方程求解零输入响应和零状态响应:

(1)零状态响应:

#连续时间系统数值求解:matlab有提供函数lsim,python中应该有:scipy包里面有lsim函数:def lsim(system, U, T, X0=None, interp=True):和matlab中的几乎一模一样from scipy import signal as signalts=0te=5dt=0.01# 计算系统的零状态响应,系统是:y''+2y'+100y=10cos(2*pi*t)# 这里,第一项是右端系数,第二项是左端系数,实际上,lti官方文档给的示例是4个二维矩阵,但我没有明白他们是要干什么。sys=signal.lti([1],[1,2,200])t=np.linspace(ts,te,500)f=10*np.cos(2*np.pi*t)T,yout,xout=signal.lsim2(sys,f,t)plt.plot(t,yout)plt.show()# 和matlab书上展示的一模一样,展示了该系统的零状态响应

 (2)冲激响应和阶跃响应:

# 连续时间系统系统冲击响应和节约响应:这个matlab有impuls和step,python也当然是有滴,就在singal里面:import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalt=np.linspace(0,4,2000)system=([1,32],[1,4,64])t,h=signal.impulse(system,T=t,N=2000)t1,g=signal.step(system,T=t,N=2000)fig1=plt.figure()ax1=fig1.add_subplot(2,1,1)ax1.plot(t,h)ax1.set_xlabel("t")ax1.set_ylabel('h(t)')ax1.set_title('impulse')ax1.grid(visible=True)ax1.axis([0,4,-1.5,3])ax2=fig1.add_subplot(2,1,2)ax2.plot(t1,g)ax2.set_xlabel("t")ax2.set_ylabel('g(t)')ax2.set_title('step')ax2.grid(visible=True)ax2.axis([0,4,0,1])plt.show()

 (3)各种信号的响应:

#计算一个特定系统:import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalb=[-0.46,-0.25,-0.12,-0.06]a=[1,0.64,0.94,0.51,0.01]system=(b,a)t1=np.linspace(0,10,10000)t2=np.linspace(-5,5,10000)f1=np.zeros(len(t1))def rect_wave(x,c,c0):     #起点为c0,宽度为c的矩形波     if x>=(c+c0):          r=0.0     elif x0:          r=1     elif x<0:          r=0     return rdef unit(t):    r=np.where(t>0.0,1.0,0.0)    return rf1=np.array([heaviside(i)for i in t1])-np.array([heaviside(i) for i in t1])# f2=np.array([rect_wave(i,1,-1) for i in t2])f2=np.ones(len(t1))f2[10:11]=0f3=t1f4=np.sin(t1)T1,yout1,xout1=signal.lsim2(system,f1,t1)T2,yout2,xout2=signal.lsim2(system,f2,t1)T3,yout3,xout3=signal.lsim2(system,f3,t1)T4,yout4,xout4=signal.lsim2(system,f4,t1)#f1、f2这两个有些问题fig2=plt.figure()ax1=fig2.add_subplot(2,2,1)ax1.plot(t1,yout1)ax1.set_title('chongji')ax2=fig2.add_subplot(2,2,2)ax2.plot(t1,yout2)ax2.set_title('jump')ax3=fig2.add_subplot(2,2,3)ax3.plot(t1,yout3)ax3.set_title('xiepo')ax4=fig2.add_subplot(2,2,4)ax4.plot(t1,yout4)ax4.set_title('sin')

 [0,0]这幅图有些问题,其他的都没啥问题。

(4)连续时间信号的卷积:

#连续时间信号卷积求解:import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaldt=0.01t=np.linspace(-1,2.5,350)t1=t-2# matlab的heaviside函数是一个阶跃函数,当输入为0时返回0.5,当输入大于0时返回1,当输入小于0时返回0。它的定义是:# heaviside(x) = 0.5, x = 0# heaviside(x) = 1, x > 0# heaviside(x) = 0, x < 0def heaviside(x):    if x==0:          r=0.5    elif x>0:          r=1    elif x<0:          r=0    return rdef unit(t):    r=np.where(t>0.0,1.0,0.0)    return rf1=np.array([heaviside(i)for i in t])-np.array([heaviside(i) for i in t1])*0.5f2=2*np.exp(-3*t)*np.array([heaviside(i)for i in t])f=np.convolve(f1,f2)*dtn=len(f)tt=np.linspace(0,n,n)*dt-2fig3=plt.figure()ax1=fig3.add_subplot(3,2,1)ax1.plot(t,f1)ax1.axis([-1,2.5,0,1.2])ax1.set_title('f1(t)')ax1.grid(visible=True)ax2=fig3.add_subplot(3,2,2)ax2.plot(t,f2)ax2.axis([-1,2.5,0,2])ax2.set_title('f2(t)')ax2.grid(visible=True)ax3=fig3.add_subplot(3,1,2)ax3.plot(tt,f)ax3.axis([-2,5,0,1])ax3.set_title('convolve')ax3.grid(visible=True)f4=signal.convolve(f1,f2)*dtax4=fig3.add_subplot(3,1,3)ax4.plot(tt,f4)ax4.axis([-2,5,0,1])ax4.set_title('convolve')ax4.grid(visible=True)plt.show()

 这里第三张用的是numpy的卷积函数,第四张用的是signal的卷积函数,我就是想看看,两者有没有上面出入。

26、离散时间系统:

实现离散时间系统的实现连续时间系统是很简单的,用numpy就行,说白了,连续就是点很多,很密,就和微分一样,我分的越细,它逼近的就越好,离散也一样,你就认为在和连续时间信号两者范围相同的情况下,区区有限个点就行:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signal#离散t=np.linspace(-10,10,41,dtype=float)#连续t1=np.linspace(-10,10,10000000,dtype=float)x=signal.square(np.pi*2*t)x1=signal.square(np.pi*2*t1)fig=plt.figure()ax1=fig.add_subplot(2,1,1)ax1.stem(t,x)ax1.set_title('discrete')ax2=fig.add_subplot(2,1,2)ax2.plot(t1,x1)ax2.set_title('coiled')plt.show()

 可以看到,上下两图的区别。

27、离散时间系统的冲激和阶跃响应:

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signala=[1,-0.35,1.5]b=[1,1]system=(b,a)t=np.linspace(0,21,21,dtype=int)x=np.power(0.5,t)T,yout,xout=signal.lsim2(system,T=t)print(T.size,yout.size,xout.size)fig1=plt.figure()ax1=fig1.add_subplot(1,2,1)ax1.stem(t,x)ax1.set_title('imput Sequence')ax1.grid(visible=True)ax2=fig1.add_subplot(1,2,2)ax2.stem(t,yout)ax2.set_title('output Sequence')ax2.grid(visible=True)plt.show()

import matplotlib.pyplot as pltimport numpy as npfrom scipy import signala=[1,6,4]b=[1,3]k=np.linspace(0,10,11,dtype=int)system=signal.dlti(b,a)T,yout=signal.dstep(system,t=k)plt.stem(T,np.squeeze(yout))

 28、卷积和运算,这都不用说啥了,前面都说过了:

#离散时间信号的卷积和运算import matplotlib.pyplot as pltimport numpy as npfrom scipy import signaldef uDt(n):    if n>=0:        y=1    else:        y=0    return ynx=np.linspace(-1,5,7,dtype=int,endpoint=True)nh=np.linspace(-2,10,13,dtype=int,endpoint=True)nx2=nx-4nh2=nh-9x=np.array([uDt(i)for i in nx])-np.array([uDt(i)for i in nx2])h=np.power(0.9,nh)h1=np.array([uDt(i)for i in nh])-np.array([uDt(i)for i in nh2])y=np.convolve(h,h1)ny1=nx[0]+nh[0]ny=ny1+np.linspace(0,(len(y)),len(y),dtype=int)fig=plt.figure()ax1=fig.add_subplot(3,1,1)ax1.stem(nx,x)ax1.grid(visible=True)ax1.set_title('x(n)')ax1.axis([-4,16,0,1.5])ax2=fig.add_subplot(3,1,2)ax2.stem(nh,h)ax2.grid(visible=True)ax2.set_title('h(n))')ax2.axis([-4,16,0,1.5])ax3=fig.add_subplot(3,1,3)ax3.stem(ny,y)ax3.set_title('y(n)')ax3.grid(visible=True)ax3.axis([-4,16,0,9])plt.show()

#已知序列卷积求和:import matplotlib.pyplot as pltimport numpy as npfrom scipy import signalfrom scipy.stats import pearsonrx=np.array([1,3,5,7,9,11,13,15,17,19])y=np.array([1,1,1,1,2,2,2,2,2,2])z=np.convolve(x,y)xlength=np.linspace(0,len(x),len(x),dtype=int)ylength=np.linspace(0,len(y),len(y),dtype=int)zlength=np.linspace(0,len(z),len(z),dtype=int)figure=plt.figure()ax1=figure.add_subplot(3,1,1)ax1.stem(xlength,x)ax1.set_title('x(n)')ax1.grid(visible=True)ax1.axis([0,len(x),0,20])ax2=figure.add_subplot(3,1,2)ax2.stem(ylength,y)ax2.set_title('y(n)')ax2.grid(visible=True)ax2.axis([0,len(y),0,2.2])ax3=figure.add_subplot(3,1,3)ax3.stem(zlength,z)ax3.set_title('z(n)=x(n)*y(n)')ax3.grid(visible=True)ax3.axis([0,20,0,max(z)+10])plt.show()print(np.corrcoef(x,y))#这个pearsonr就不用看来,他输出的结果是xy这两个序列的相关系数矩阵,这个在统计学里面会用得到,但现在似乎没有任何用,是我刚开始搞错了corr_coef, p_value = pearsonr(x, y)print(corr_coef,p_value)

 29、相关序列(自相关、互相关):

这些前面都讲过了,没啥意思的,这里就不再说了

其实,这两天主要就在忙这个,因为,怎么说呢,我是可以看懂matlab的,但是你要让我去用matlab写代码,我是一百万个不情愿,可能是因为1、我的水平还很低级,2、本科的时候学的是面向对象的C++和Python,对面向对象的编程方式比较熟悉,所以我就选择了使用python来学习数字信号处理,Python很强大,而且都是开源的,对于我来说,Python用起来比Matlab顺手的多,当然,这也是个人原因,办公室的几个师兄师姐就觉得matlab比c++和python简单,所以他们Matlab用的多,但是,说白了,编程语言就是个简单工具,最重要的还是算法和思想。

来源地址:https://blog.csdn.net/faltas/article/details/130910386

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

数字信号处理8:利用Python进行数字信号处理基础

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C#数字信号处理工具包如何使用

这篇文章主要介绍“C#数字信号处理工具包如何使用”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C#数字信号处理工具包如何使用”文章能帮助大家解决问题。JXI C# DSP Tools, Spectr
2023-07-05

聚星C#数字信号处理工具包频谱分析的用法

这篇文章主要介绍了聚星C#数字信号处理工具包频谱分析的用法,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-02-26

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录