我的编程空间,编程开发者的网络收藏夹
学习永远不晚

HDFS-Hadoop NameNode高可用机制

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

HDFS-Hadoop NameNode高可用机制

1 - 为什么要高可用

在 Hadoop 中,NameNode 扮演着至关重要的角色 —— 整个 HDFS 文件系统的元数据信息都由 NameNode 管理,一旦 NameNode 进程出现异常,或者维护 NameNode 所在节点的时候,都会导致 HDFS 集群不可用。

所以 NameNode 的可用性直接决定了 Hadoop 集群的可用性。

2 - NameNode 的高可用发展史

在 Hadoop 2.0 以前,每个 HDFS 集群只有一个 NameNode,一旦这个节点不可用,则整个 HDFS 集群将处于不可用状态 —— 即,HDFS 2.0 以前,NameNode 存在单点故障风险。

与典型的 HA(High Availability,高可用)方案一样(参考:常见的六种容错机制),HDFS 2.0 开始支持的 HA,就是 在 HDFS 集群中同时运行两个 NameNode。

一个处于 Active(活跃)状态:负责集群中所有客户端的操作(修改命名空间、删除备份数据块等操作);

另一个处于 Standby(备份)状态:充当从服务器,和 Active NameNode 有相同的命名空间和元数据。

当 Active NameNode 停止服务时,Standby NameNode 能够快速进行故障切换,以保证 HDFS 集群服务不受影响。

3 - HDFS 的高可用架构

看图:


Standby NemeNode 是如何做到故障切换的?换句话说,它和 Active NameNode 之间的数据是如何保持一致的?

3.1 Standby 和 Active 的命名空间保持一致

它们存储着一样的元数据,可以把集群恢复到系统奔溃时的状态 —— 这是实现自动故障切换的基础。

为了使备份节点与活动节点的数据保持同步,两个节点都需要同一组独立运行的节点来通信,HDFS 中把这样的节点称为 JournalNode。

1)第一关系链的一致性,即 Active NameNode 和 Standby NameNode 的命名空间状态的一致性:

a)Active NameNode 会定期地把 修改命名空间或删除备份数据块等操作 记录到 EditLog,同时写到 JN 的多数节点中。

b)Standby NameNode 会一直监听 JN 上 EditLog的变化,如果 editlog 有改动,Standby NameNode 就会读取 editlog 并与当前的命名空间合并。

c)Active NameNode 出现故障时,Standby NameNode 会保证已经从 JN 上读取了所有 editlog 并与命名空间合并,然后才会从 Standby 切换为 Active。

2)第二关系链的一致性,即数据块的存储信息的一致性:

为了使故障切换能够尽快执行成功,就要保证 Standby NameNode 也 实时保存了数据块的存储信息,HDFS 中是这样做的:

DataNode 会同时向两个 NameNode 发送心跳以及块的存储信息。

这样以来,发生故障切换时,Standby NameNode 就可以直接切换到 Active 状态(它和旧 Active 节点的元数据完全一致),而不需要等待所有的 DataNode 汇报全量数据块信息 —— 这也是热备功能。

需要注意:Standby NameNode 只会更新数据块的存储信息,并不会向 DataNode 发送复制或删除数据块的指令,这些指令只能由 Active NameNode 发送。

3.2 同一时刻只有一个 Active NameNode

如果两个 NameNode 都是活跃状态,那么这个集群就会被分成2个小集群,它们都认为自己是唯一活动的集群。这就是著名的“脑裂”现象。

脑裂的 HDFS 集群很可能造成数据错乱、丢失数据块,还可能向 DataNode 下发错误的指令,这些错误都很难恢复。

4 - HDFS 高可用的实现原理

这里主要介绍通过隔离(fencing)和 Quorum Journal Manager(QJM)共享存储实现的 HDFS 高可用。

4.1 隔离(Fencing)- 预防脑裂

预防脑裂的常见方案就是 Fencing,即隔离,思路是把旧的 Active NameNode 隔离起来,使它不能正常对外提供服务,使集群在任何时候都只有一个 Active NameNode。

HDFS 提供了 3 个级别的隔离(Fencing):

1)共享存储隔离:同一时间只允许一个 NameNode 向 JournalNode 写入 EditLog 数据。

2)客户端隔离:同一时间只允许一个 NameNode 可以响应客户端的请求。

3)DataNode 隔离:同一时间只允许一个 NameNode 向 DataNode 下发命名空间相关的命令,例如删除块,复制块等。

4.2 Qurom Journal Manager 共享存储

在 HDFS 的 HA 架构中还有一个非常重要的部分:Active NameNode 和 Standby NameNode 之间如何共享 EditLog 文件。

解决思路是:Active NameNode 将日志文件写到共享存储上,Standby NameNode 实时地从共享存储读取 EditLog 文件,然后合并到 Standby NameNode 的命名空间中。一旦 Active NameNode 发生错误,Standby NameNode 就可以立即切换到Active状态。

HDFS 2.6 开始,提供了一个叫做 Qurom Journal Manager(QJM)的共享存储方案,来解决 HA 架构中元数据的共享存储问题。

QJM 基于 Paxos 算法实现,基本原理是:HDFS 集群中有 2n+1 台 JournalNode,EditLog 保存在 JN 的本地磁盘上;

每个 JournalNode 都允许 NmaeNode 通过它的 RPC 接口读写 EditLog 文件;

当 NmaeNode 向共享存储写入 EditLog 文件时,它会通过 QJM 向集群中所有的 JournalNode 并行发送写 EditLog 文件的请求,当有一半以上(>=n+1)的 JN 返回写操作成功时,就认为这次写操作成功了。

每次写数据操作有多数(>=n+1)JN 返回成功,就认为这次写操作成功了。

由此我们可以知道,这个 QJM 必须也是高可用的,否则 HDFS 的高可用就无法保障。

QJM 实现 HA 的主要好处:

  • 不存在单点故障问题;
  • 不需要配置额外的共享存储,降低了复杂度和维护成本;
  • 不需要单独配置 Fencing 实现(见文末#5.1节),因为 QJM 本身就内置了 Fencing 的功能;
  • 系统的鲁棒性程度是可配置的( QJM 基于 Paxos 算法,配置 2n+1 台 JournalNode,最多能容忍 n 台机器同时挂掉);
  • QJM 中存储日志的 JournalNode 不会因为其中一台的延迟而影响整体的延迟,而且也不会因为 JournalNode 的数量增多而影响性能(因为 NameNode 向 JournalNode 发送日志是并行的)。

关于 QJM 的具体工作原理,后面有机会了专门讲讲。

5 - 其他补充

5.1 QJM 的 Fencing 方案

QJM 的 Fencing 只能让原来的 Active NN 失去对 JN 的写权限,但是原来的 Active NN 还是可以响应客户端的请求,对 DataNode 进行读操作。

对客户端和 DataNode 的隔离是通过配置 dfs.ha.fencing.methods 实现的,Hadoop 公共库中有两种 Fencing 实现:

shell:即执行一个用户事先定义的 shell 命令或脚本来完成隔离。

sshfence:ssh 到原 Active NN 上,使用 fuser 结束进程(通过 TCP 端口号定位进程 pid,比 jps 命令更准确)。

5.2 - HDFS 高可用组件简介

5.2.1 ZKFailoverController

是基于 ZooKeeper 的故障转移控制器,它负责控制 NameNode 的主备切换,ZKFailoverController 会监测NameNode 的健康状态,当发现 Active NameNode 出现异常时会通过 ZooKeeper 进行一次新的选举,完成 Active 和 Standby 状态的切换。

5.2.2 HealthMonitor

周期性调用 NameNode 的 HAServiceProtocol RPC 接口(monitorHealth 和 getServiceStatus),监控 NameNode 的健康状态并向 ZKFailoverController 反馈。

5.2.3 ActiveStandbyElector

接收 ZKFailoverController 的选举请求,通过 ZooKeeper 自动完成主备选举,选举完成后回调 ZKFailoverController 的主备切换方法对 NameNode 进行 Active 和 Standby 状态的切换。

参考资料

//www.jb51.net/article/220423.htm

//www.jb51.net/article/220415.htm

以上就是Hadoop NameNode高可用机制的详细内容,更多关于Hadoop NameNode高可用的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

HDFS-Hadoop NameNode高可用机制

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Hadoop的高可用性及故障处理机制是什么

Hadoop的高可用性和故障处理机制主要通过以下几种方式实现:多副本存储:Hadoop使用HDFS(Hadoop分布式文件系统)来存储数据,数据会被分成多个块并存储在不同的数据节点上,每个数据块会有多个副本,通常默认情况下会有三个副本。这样
Hadoop的高可用性及故障处理机制是什么
2024-03-11

Hadoop高可用性配置指南

Hadoop是一个开源的分布式计算平台,用于处理大规模数据集。在生产环境中,需要配置Hadoop集群的高可用性,以确保集群能够稳定运行并提供高效的数据处理能力。以下是Hadoop高可用性配置的一些建议:配置NameNode高可用性:Hado
Hadoop高可用性配置指南
2024-02-29

hadoop切片机制怎么应用

这篇文章主要介绍“hadoop切片机制怎么应用”,在日常操作中,相信很多人在hadoop切片机制怎么应用问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”hadoop切片机制怎么应用”的疑惑有所帮助!接下来,请跟
2023-06-29

Hadoop高可用搭建的示例分析

这篇文章给大家分享的是有关Hadoop高可用搭建的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Hadoop高可用搭建超详细实验环境1.安装jdk2.修改hostname3.修改hosts映射,并配置ss
2023-06-27

自动化HDFS数据复制机制的简单用法

这篇文章主要介绍“自动化HDFS数据复制机制的简单用法”,在日常操作中,相信很多人在自动化HDFS数据复制机制的简单用法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”自动化HDFS数据复制机制的简单用法”的疑
2023-06-02

Hadoop2.2.0中HDFS的高可用性实现原理是什么

这篇文章主要介绍“ Hadoop2.2.0中HDFS的高可用性实现原理是什么”,在日常操作中,相信很多人在 Hadoop2.2.0中HDFS的高可用性实现原理是什么问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答
2023-06-03

怎么用Hadoop源码分析心跳机制

这篇文章将为大家详细讲解有关怎么用Hadoop源码分析心跳机制,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。一.心跳机制1. hadoop集群是master/slave模式,master包括
2023-06-17

hadoop高可用集群搭建的方法是什么

搭建Hadoop高可用集群通常需要使用Hadoop的高可用组件,如ZooKeeper和HA(High Availability)。以下是搭建Hadoop高可用集群的一般步骤:部署ZooKeeper集群:首先需要搭建一个ZooKeeper集群
hadoop高可用集群搭建的方法是什么
2024-03-13

Teradata支持哪些高可用性和容错机制

Teradata支持以下高可用性和容错机制:数据备份和恢复:Teradata提供了数据备份和恢复工具,可以定期备份数据并在需要时进行恢复。RAID技术:Teradata支持RAID(冗余磁盘阵列)技术,可以在硬件级别上提供数据的冗余备份和
Teradata支持哪些高可用性和容错机制
2024-04-09

Redis搭建主从复制实现高可用(如何保证 Redis 主从复制的高可用性?)

高可用 HA(High Availability)是分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计减少系统不能提供服务的时间。
Redis搭建主从复制实现高可用(如何保证 Redis 主从复制的高可用性?)
2024-11-01

利用 PHP 防抖机制提高系统的稳定性和可靠性

在开发PHP应用程序时,我们经常会遇到一些需要处理用户输入或触发事件的情况。然而,用户输入或事件触发时的频繁操作可能会对系统的稳定性和可靠性造成负面影响。为了解决这个问题,我们可以利用PHP提供的防抖机制。防抖机制的原理是在用户输入或事件触
2023-10-21

Linux主机与Keepalived高可用配置

在Linux系统中,Keepalived是一个用于实现高可用性的软件,它通过VRRP(虚拟路由冗余协议)来监控和管理网络服务。以下是关于Linux主机与Keepalived高可用配置的相关信息:Keepalived简介Keepalive
Linux主机与Keepalived高可用配置
2024-09-27

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录