OpenCV实现直线检测
短信预约 -IT技能 免费直播动态提醒
本文实例为大家分享了OpenCV实现直线检测的具体代码,供大家参考,具体内容如下
1 介绍
本文主要介绍OpenCV自带的直线检测函数HoughLines()的用法,这个函数的第一个参数是一个二值化图像,所以在进行霍夫变换之前要首先进行二值化,或者进行Canny 边缘检测。第二和第三个值分别代表β 和 θ 的精确度。第四个参数是阈值,只有累加其中的值高于阈值时才被认为是一条直线,也可以把它看成能检测到的直线的最短长度(以像素点为单位)。返回值就是(β; θ)。β 的单位是像素,θ的单位是弧度。
2 代码
#直线检测
#使用霍夫直线变换做直线检测,前提条件:边缘检测已经完成
import cv2 as cv
import numpy as np
import matplotlib.pylab as plt
#标准霍夫线变换
def line_detection(image):
gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3) #apertureSize参数默认其实就是3
cv.imshow("edges", edges)
lines = cv.HoughLines(edges, 1, np.pi/180, 80)
for line in lines:
rho, theta = line[0] #line[0]存储的是点到直线的极径和极角,其中极角是弧度表示的。
a = np.cos(theta) #theta是弧度
b = np.sin(theta)
x0 = a * rho #代表x = r * cos(theta)
y0 = b * rho #代表y = r * sin(theta)
x1 = int(x0 + 1000 * (-b)) #计算直线起点横坐标
y1 = int(y0 + 1000 * a) #计算起始起点纵坐标
x2 = int(x0 - 1000 * (-b)) #计算直线终点横坐标
y2 = int(y0 - 1000 * a) #计算直线终点纵坐标 注:这里的数值1000给出了画出的线段长度范围大小,数值越小,画出的线段越短,数值越大,画出的线段越长
cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2) #点的坐标必须是元组,不能是列表。
cv.imshow("image-lines", image)
#统计概率霍夫线变换
def line_detect_possible_demo(image):
gray = cv.cvtColor(image, cv.COLOR_RGB2GRAY)
edges = cv.Canny(gray, 50, 150, apertureSize=3) # apertureSize参数默认其实就是3
lines = cv.HoughLinesP(edges, 1, np.pi / 180, 60, minLineLength=60, maxLineGap=5)
for line in lines:
x1, y1, x2, y2 = line[0]
cv.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)
cv.imshow("line_detect_possible_demo",image)
class="lazy" data-src = cv.imread(r'..\edge.jpg')
print(class="lazy" data-src.shape)
cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
cv.imshow('input_image', class="lazy" data-src)
line_detection(class="lazy" data-src)
class="lazy" data-src = cv.imread(r'..\edge.jpg') #调用上一个函数后,会把传入的class="lazy" data-src数组改变,所以调用下一个函数时,要重新读取图片
line_detect_possible_demo(class="lazy" data-src)
cv.waitKey(0)
cv.destroyAllWindows()
3 效果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持编程网。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341