我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中LightGBM的示例分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中LightGBM的示例分析

这篇文章主要介绍Python中LightGBM的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

一、Introduction

LightGBM是扩展机器学习系统。是一款基于GBDT(梯度提升决策树)算法的分布梯度提升框架。其设计思路主要集中在减少数据对内存与计算性能的使用上,以及减少多机器并行计算时的通讯代价

1 LightGBM的优点

  • 简单易用。提供了主流的Python\C++\R语言接口,用户可以轻松使用LightGBM建模并获得相当不错的效果。

  • 高效可扩展。在处理大规模数据集时高效迅速、高准确度,对内存等硬件资源要求不高。

  • 鲁棒性强。相较于深度学习模型不需要精细调参便能取得近似的效果。

  • LightGBM直接支持缺失值与类别特征,无需对数据额外进行特殊处理

2 LightGBM的缺点

  • 相对于深度学习模型无法对时空位置建模,不能很好地捕获图像、语音、文本等高维数据。

  • 在拥有海量训练数据,并能找到合适的深度学习模型时,深度学习的精度可以遥遥领先LightGBM。

二、实现过程

1 数据集介绍

英雄联盟数据集 提取码:1234

本数据用于LightGBM分类实战。该数据集共有9881场英雄联盟韩服钻石段位以上的排位赛数据,数据提供了在十分钟时的游戏状态,包括击杀数,金币数量,经验值,等级等信息。

Python中LightGBM的示例分析

2 Coding

#导入基本库import numpy as np import pandas as pd## 绘图函数库import matplotlib.pyplot as pltimport seaborn as sns#%% 数据读入:利用Pandas自带的read_csv函数读取并转化为DataFrame格式df = pd.read_csv('D:\Python\ML\data\high_diamond_ranked_10min.csv')y = df.blueWins#%%查看样本数据#print(y.value_counts())#标注特征列drop_cols=['gameId','blueWins']x=df.drop(drop_cols,axis=1)#对数字特征进行统计描述x_des=x.describe()

Python中LightGBM的示例分析

Python中LightGBM的示例分析

#%%去除冗余数据,因为红蓝为竞争关系,只需知道一方的情况,对方相反因此去除红方的数据信息drop_cols = ['redFirstBlood','redKills','redDeaths'             ,'redGoldDiff','redExperienceDiff', 'blueCSPerMin',            'blueGoldPerMin','redCSPerMin','redGoldPerMin']x.drop(drop_cols, axis=1, inplace=True)#%%可视化描述。为了有一个好的呈现方式,分两张小提琴图展示前九个特征和中间九个特征,后面的相同不再赘述data = xdata_std = (data - data.mean()) / data.std()data = pd.concat([y, data_std.iloc[:, 0:9]], axis=1)#将标签与前九列拼接此时的到的data是(9879*10)的metricdata = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')#将上面的数据melt成(88911*3)的metricfig, ax = plt.subplots(1,2,figsize=(15,8))# 绘制小提琴图sns.violinplot(x='Features', y='Values', hue='blueWins', data=data, split=True,               inner='quart', ax=ax[0], palette='Blues')fig.autofmt_xdate(rotation=45)#改变x轴坐标的现实方法,可以斜着表示(倾斜45度),不用平着挤成一堆data = xdata_std = (data - data.mean()) / data.std()data = pd.concat([y, data_std.iloc[:, 9:18]], axis=1)data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')# 绘制小提琴图sns.violinplot(x='Features', y='Values', hue='blueWins',                data=data, split=True, inner='quart', ax=ax[1], palette='Blues')fig.autofmt_xdate(rotation=45)plt.show()

Python中LightGBM的示例分析

#%%画出各个特征之间的相关性热力图fig,ax=plt.subplots(figsize=(15,18))sns.heatmap(round(x.corr(),2),cmap='Blues',annot=True)fig.autofmt_xdate(rotation=45)plt.show()

Python中LightGBM的示例分析

#%%根据上述特征图,剔除相关性较强的冗余特征(redAvgLevel,blueAvgLevel)# 去除冗余特征drop_cols = ['redAvgLevel','blueAvgLevel']x.drop(drop_cols, axis=1, inplace=True)sns.set(style='whitegrid', palette='muted')# 构造两个新特征x['wardsPlacedDiff'] = x['blueWardsPlaced'] - x['redWardsPlaced']x['wardsDestroyedDiff'] = x['blueWardsDestroyed'] - x['redWardsDestroyed']data = x[['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff','wardsDestroyedDiff']].sample(1000)data_std = (data - data.mean()) / data.std()data = pd.concat([y, data_std], axis=1)data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')plt.figure(figsize=(15,8))sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)plt.show()

Python中LightGBM的示例分析

#%%由上图插眼数量的离散图,可以发现插眼数量与游戏胜负之间的显著规律,游戏前十分钟插眼与否对最终的胜负影响不大,故将这些特征去除## 去除和眼位相关的特征drop_cols = ['blueWardsPlaced','blueWardsDestroyed','wardsPlacedDiff',            'wardsDestroyedDiff','redWardsPlaced','redWardsDestroyed']x.drop(drop_cols, axis=1, inplace=True)#%%击杀、死亡与助攻数的数据分布差别不大,但是击杀减去死亡、助攻减去死亡的分布与缘分不差别较大,构造两个新的特征x['killsDiff'] = x['blueKills'] - x['blueDeaths']x['assistsDiff'] = x['blueAssists'] - x['redAssists']x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].hist(figsize=(15,8), bins=20)plt.show()

Python中LightGBM的示例分析

#%%data = x[['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists']].sample(1000)data_std = (data - data.mean()) / data.std()data = pd.concat([y, data_std], axis=1)data = pd.melt(data, id_vars='blueWins', var_name='Features', value_name='Values')plt.figure(figsize=(10,6))sns.swarmplot(x='Features', y='Values', hue='blueWins', data=data)plt.xticks(rotation=45)plt.show()

Python中LightGBM的示例分析

#%%data = pd.concat([y, x], axis=1).sample(500)sns.pairplot(data, vars=['blueKills','blueDeaths','blueAssists','killsDiff','assistsDiff','redAssists'],              hue='blueWins')plt.show()

Python中LightGBM的示例分析

#%%一些特征两两组合后对于数据的划分有提升x['dragonsDiff'] = x['blueDragons'] - x['redDragons']#拿到龙x['heraldsDiff'] = x['blueHeralds'] - x['redHeralds']#拿到峡谷先锋x['eliteDiff'] = x['blueEliteMonsters'] - x['redEliteMonsters']#击杀大型野怪data = pd.concat([y, x], axis=1)eliteGroup = data.groupby(['eliteDiff'])['blueWins'].mean()dragonGroup = data.groupby(['dragonsDiff'])['blueWins'].mean()heraldGroup = data.groupby(['heraldsDiff'])['blueWins'].mean()fig, ax = plt.subplots(1,3, figsize=(15,4))eliteGroup.plot(kind='bar', ax=ax[0])dragonGroup.plot(kind='bar', ax=ax[1])heraldGroup.plot(kind='bar', ax=ax[2])print(eliteGroup)print(dragonGroup)print(heraldGroup)plt.show()

Python中LightGBM的示例分析

#%%推塔数量与游戏胜负x['towerDiff'] = x['blueTowersDestroyed'] - x['redTowersDestroyed']data = pd.concat([y, x], axis=1)towerGroup = data.groupby(['towerDiff'])['blueWins']print(towerGroup.count())print(towerGroup.mean())fig, ax = plt.subplots(1,2,figsize=(15,5))towerGroup.mean().plot(kind='line', ax=ax[0])ax[0].set_title('Proportion of Blue Wins')ax[0].set_ylabel('Proportion')towerGroup.count().plot(kind='line', ax=ax[1])ax[1].set_title('Count of Towers Destroyed')ax[1].set_ylabel('Count')

Python中LightGBM的示例分析

#%%利用LightGBM进行训练和预测## 为了正确评估模型性能,将数据划分为训练集和测试集,并在训练集上训练模型,在测试集上验证模型性能。from sklearn.model_selection import train_test_split## 选择其类别为0和1的样本 (不包括类别为2的样本)data_target_part = ydata_features_part = x## 测试集大小为20%, 80%/20%分x_train, x_test, y_train, y_test = train_test_split(data_features_part, data_target_part, test_size = 0.2, random_state = 2020)#%%## 导入LightGBM模型from lightgbm.sklearn import LGBMClassifier## 定义 LightGBM 模型 clf = LGBMClassifier()# 在训练集上训练LightGBM模型clf.fit(x_train, y_train)#%%在训练集和测试集上分别利用训练好的模型进行预测train_predict = clf.predict(x_train)test_predict = clf.predict(x_test)from sklearn import metrics## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_train,train_predict))print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_test,test_predict))## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化plt.figure(figsize=(8, 6))sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')plt.xlabel('Predicted labels')plt.ylabel('True labels')plt.show()

Python中LightGBM的示例分析

Python中LightGBM的示例分析

#%%利用lightgbm进行特征选择,同样可以用属性feature_importances_查看特征的重要度sns.barplot(y=data_features_part.columns, x=clf.feature_importances_)

Python中LightGBM的示例分析

#%%除feature_importances_外,还可以使用LightGBM中的其他属性进行评估(gain,split)from sklearn.metrics import accuracy_scorefrom lightgbm import plot_importancedef estimate(model,data):    ax1=plot_importance(model,importance_type="gain")    ax1.set_title('gain')    ax2=plot_importance(model, importance_type="split")    ax2.set_title('split')    plt.show()def classes(data,label,test):    model=LGBMClassifier()    model.fit(data,label)    ans=model.predict(test)    estimate(model, data)    return ans ans=classes(x_train,y_train,x_test)pre=accuracy_score(y_test, ans)print('acc=',accuracy_score(y_test,ans))

Python中LightGBM的示例分析

Python中LightGBM的示例分析

通过调整参数获得更好的效果: LightGBM中重要的参数

  • learning_rate: 有时也叫作eta,系统默认值为0.3。每一步迭代的步长,很重要。太大了运行准确率不高,太小了运行速度慢。

  • num_leaves:系统默认为32。这个参数控制每棵树中最大叶子节点数量。

  • feature_fraction:系统默认值为1。我们一般设置成0.8左右。用来控制每棵随机采样的列数的占比(每一列是一个特征)。

  • max_depth: 系统默认值为6,我们常用3-10之间的数字。这个值为树的最大深度。这个值是用来控制过拟合的。max_depth越大,模型学习的更加具体。

#%%调整参数,获得更好的效果## 从sklearn库中导入网格调参函数from sklearn.model_selection import GridSearchCV## 定义参数取值范围learning_rate = [0.1, 0.3, 0.6]feature_fraction = [0.5, 0.8, 1]num_leaves = [16, 32, 64]max_depth = [-1,3,5,8]parameters = { 'learning_rate': learning_rate,              'feature_fraction':feature_fraction,              'num_leaves': num_leaves,              'max_depth': max_depth}model = LGBMClassifier(n_estimators = 50)## 进行网格搜索clf = GridSearchCV(model, parameters, cv=3, scoring='accuracy',verbose=3, n_jobs=-1)clf = clf.fit(x_train, y_train)#%%查看最好的参数值分别是多少print(clf.best_params_)

Python中LightGBM的示例分析

#%%查看最好的参数值分别是多少print(clf.best_params_)#%% 在训练集和测试集上分布利用最好的模型参数进行预测## 定义带参数的 LightGBM模型 clf = LGBMClassifier(feature_fraction = 1,                    learning_rate = 0.1,                    max_depth= 3,                    num_leaves = 16)# 在训练集上训练LightGBM模型clf.fit(x_train, y_train)train_predict = clf.predict(x_train)test_predict = clf.predict(x_test)## 利用accuracy(准确度)【预测正确的样本数目占总预测样本数目的比例】评估模型效果print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_train,train_predict))print('The accuracy of the LightGBM is:',metrics.accuracy_score(y_test,test_predict))## 查看混淆矩阵 (预测值和真实值的各类情况统计矩阵)confusion_matrix_result = metrics.confusion_matrix(test_predict,y_test)print('The confusion matrix result:\n',confusion_matrix_result)# 利用热力图对于结果进行可视化plt.figure(figsize=(8, 6))sns.heatmap(confusion_matrix_result, annot=True, cmap='Blues')plt.xlabel('Predicted labels')plt.ylabel('True labels')plt.show()

Python中LightGBM的示例分析

Python中LightGBM的示例分析

三、Keys

LightGBM的重要参数

基本参数调整
  • num_leaves参数 这是控制树模型复杂度的主要参数,一般的我们会使num_leaves小于(2的max_depth次方),以防止过拟合。由于LightGBM是leaf-wise建树与XGBoost的depth-wise建树方法不同,num_leaves比depth有更大的作用。

  • min_data_in_leaf 这是处理过拟合问题中一个非常重要的参数. 它的值取决于训练数据的样本个树和 num_leaves参数. 将其设置的较大可以避免生成一个过深的树, 但有可能导致欠拟合. 实际应用中, 对于大数据集, 设置其为几百或几千就足够了.

  • max_depth 树的深度,depth 的概念在 leaf-wise 树中并没有多大作用, 因为并不存在一个从 leaves 到 depth 的合理映射

针对训练速度的参数调整
  • 通过设置 bagging_fraction 和 bagging_freq 参数来使用 bagging 方法。

  • 通过设置 feature_fraction 参数来使用特征的子抽样。

  • 选择较小的 max_bin 参数。使用 save_binary 在未来的学习过程对数据加载进行加速。

针对准确率的参数调整
  • 使用较大的 max_bin (学习速度可能变慢)

  • 使用较小的 learning_rate 和较大的 num_iterations

  • 使用较大的 num_leaves (可能导致过拟合)

  • 使用更大的训练数据

  • 尝试 dart 模式

针对过拟合的参数调整
  • 使用较小的 max_bin

  • 使用较小的 num_leaves

  • 使用 min_data_in_leaf 和 min_sum_hessian_in_leaf

  • 通过设置 bagging_fraction 和 bagging_freq 来使用 bagging

  • 通过设置 feature_fraction 来使用特征子抽样

  • 使用更大的训练数据

  • 使用 lambda_l1, lambda_l2 和 min_gain_to_split 来使用正则

  • 尝试 max_depth 来避免生成过深的树

以上是“Python中LightGBM的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注编程网行业资讯频道!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中LightGBM的示例分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中LightGBM的示例分析

这篇文章主要介绍Python中LightGBM的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、IntroductionLightGBM是扩展机器学习系统。是一款基于GBDT(梯度提升决策树)算法的分布梯度
2023-06-26

Python基于LightGBM进行时间序列预测的示例分析

这篇文章主要介绍了Python基于LightGBM进行时间序列预测的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。前言当我们考虑时间序列的增强树时,通常会想到 M5
2023-06-29

python中zip的示例分析

这篇文章主要介绍了python中zip的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。zip压轴出场的也是很棒的一个模块。你曾经遇到过需要从两个列表中形成字典吗?ke
2023-06-27

python中flask的示例分析

这篇文章主要介绍python中flask的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一.简介Flask是一个使用Python编写的轻量级Web应用框架。基于Werkzeug WSGI工具箱和Jinja2
2023-06-20

python中xkcd的示例分析

这篇文章将为大家详细讲解有关python中xkcd的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。xkcd幽默是 Python 语言的一个关键特征,它是以英国喜剧小品剧Python飞行马戏团命名的
2023-06-27

python中waitKey的示例分析

这篇文章主要介绍了python中waitKey的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传
2023-06-14

Python中算法的示例分析

小编给大家分享一下Python中算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1. 算法的设计要求算法分析的主要目标是从运行时间和内存空间消耗等方面
2023-06-22

python中集合的示例分析

这篇文章主要介绍python中集合的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!一、集合的基本信息集合:集合是无序的,集合中的元素是唯一的,集合一般用于元组或者列表中的元素去重。格式:set1 = set(
2023-06-15

python中搜索的示例分析

这篇文章将为大家详细讲解有关python中搜索的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1. 普通搜索搜索是指从元素集合中找到某个特定元素的算法过程。搜索过程通常返回 True 或 Fals
2023-06-22

Python中自动微分的示例分析

这篇文章主要为大家展示了“Python中自动微分的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Python中自动微分的示例分析”这篇文章吧。一、简介antograd包是Pytorch中
2023-06-25

Python +Selenium的示例分析

本篇文章给大家分享的是有关Python +Selenium的示例分析,小编觉得挺实用的,因此分享给大家学习,希望大家阅读完这篇文章后可以有所收获,话不多说,跟着小编一起来看看吧。下面,我们对比几大主流编程语言的代码量,以「Hello Wor
2023-06-05

python中PTD算法的示例分析

小编给大家分享一下python中PTD算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!1.引言1.1什么是地面点滤波?机载激光雷达(airborne
2023-06-20

python中DataFrame运算的示例分析

这篇文章给大家分享的是有关python中DataFrame运算的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Python的优点有哪些1、简单易用,与C/C++、Java、C# 等传统语言相比,Pytho
2023-06-15

Python asyncio的示例分析

Python asyncio的示例分析,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。我们先从一个常见的Python编程错误开始说起,我已经见过非常多的程序员犯过这种错误了:
2023-06-22

Python中opencv操作的示例分析

这篇文章主要介绍Python中opencv操作的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!直接读取图片def display_img(file="p.jpeg"): img = cv.imread(fi
2023-06-14

python中pandas.read_csv()函数的示例分析

这篇文章主要介绍了python中pandas.read_csv()函数的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。pandas库简介官方网站里详细说明了panda
2023-06-14

python中for循环的示例分析

这篇文章将为大家详细讲解有关python中for循环的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1、遍历可迭代的对象。循环的本质是首先通过iter()函数获得可迭代对象Iterable的迭代器
2023-06-15

python中sys模块的示例分析

小编给大家分享一下python中sys模块的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!python版本: Python 2.7.61: sys是pyt
2023-06-14

python中bs4解析和xpath解析的示例分析

这篇文章给大家分享的是有关python中bs4解析和xpath解析的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。bs4解析原理:1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对
2023-06-29

python中不同模板的示例分析

这篇文章将为大家详细讲解有关python中不同模板的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。python的数据类型有哪些?python的数据类型:1. 数字类型,包括int(整型)、long
2023-06-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录