我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python  处理 Pandas DataFrame 中的行和列

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python  处理 Pandas DataFrame 中的行和列

前言:

数据框是一种二维数据结构,即数据以表格的方式在行和列中对齐。我们可以对行/列执行基本操作,例如选择、删除、添加和重命名。在本文中,我们使用的是nba.csv文件。

处理列

为了处理列,我们对列执行基本操作,例如选择、删除、添加和重命名。

列选择:为了在 Pandas DataFrame 中选择一列,我们可以通过列名调用它们来访问这些列。

# Import pandas package
import pandas as pd

# 定义包含员工数据的字典
data = {'Name':['Jai', 'Princi', 'Gaurav', 'Anuj'],
		'Age':[27, 24, 22, 32],
		'Address':['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
		'Qualification':['Msc', 'MA', 'MCA', 'Phd']}

# 将字典转换为 DataFrame
df = pd.DataFrame(data)

# 选择两列
print(df[['Name', 'Qualification']])

输出:

列添加:为了在 Pandas DataFrame 中添加列,我们可以将新列表声明为列并添加到现有数据框。

# Import pandas package
import pandas as pd

# 定义包含学生数据的字典
data = {'Name': ['Jai', 'Princi', 'Gaurav', 'Anuj'],
		'Height': [5.1, 6.2, 5.1, 5.2],
		'Qualification': ['Msc', 'MA', 'Msc', 'Msc']}

# 将字典转换为 DataFrame
df = pd.DataFrame(data)

# 声明要转换为列的列表
address = ['Delhi', 'Bangalore', 'Chennai', 'Patna']

# 使用“地址”作为列名并将其等同于列表
df['Address'] = address

# 观察结果
print(df)

输出:

有关更多示例,请参阅在 Pandas列删除中向现有 DataFrame 添加新列:为了删除 Pandas DataFrame 中的列,我们可以使用该方法。通过删除具有列名的列来删除列。
drop()

# importing pandas module
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("nba.csv", index_col ="Name" )

# 删除通过的列
data.drop(["Team", "Weight"], axis = 1, inplace = True)

# 展示
print(data)

输出:如输出图像所示,新输出没有传递的列。这些值被删除,因为轴设置为等于 1,并且由于 inplace 为 True,因此在原始数据框中进行了更改。

删除列之前的数据框- 删除列:

之后的数据框:

处理行

为了处理行,我们可以对行执行基本的操作,例如选择、删除、添加和重命名。

行选择Pandas 提供了一种从数据框中检索行的独特方法。DataFrame.loc[]方法用于从 Pandas DataFrame 中检索行。也可以通过将整数位置传递给 iloc[] 函数来选择行。

# importing pandas package
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("nba.csv", index_col ="Name")

# 通过 loc 方法检索行
first = data.loc["Avery Bradley"]
second = data.loc["R.J. Hunter"]
print(first, "\n\n\n", second)

输出:如输出图像所示,由于两次都只有一个参数,因此返回了两个系列。

有关更多示例,请参阅Pandas 使用 .loc Row Addition提取行:为了在 Pandas DataFrame 中添加一行,我们可以将旧数据帧与新数据帧连接。

# importing pandas module
import pandas as pd
	
# 制作数据框
df = pd.read_csv("nba.csv", index_col ="Name")

df.head(10)

new_row = pd.DataFrame({'Name':'Geeks', 'Team':'Boston', 'Number':3,
						'Position':'PG', 'Age':33, 'Height':'6-2',
						'Weight':189, 'College':'MIT', 'Salary':99999},
															index =[0])
# 简单地连接两个数据框
df = pd.concat([new_row, df]).reset_index(drop = True)
df.head(5)

输出:添加行前的数据框- 添加行

后的数据框-

删除行:为了删除 Pandas DataFrame 中的一行,我们可以使用 drop() 方法。通过按索引标签删除行来删除行。

# importing pandas module
import pandas as pd

# 从csv文件制作数据框
data = pd.read_csv("nba.csv", index_col ="Name" )

# 删除传递的值
data.drop(["Avery Bradley", "John Holland", "R.J. Hunter",
							"R.J. Hunter"], inplace = True)
# 展示
data

输出:如输出图像所示,新输出没有传递的值。由于 inplace 为 True,因此删除了这些值并在原始数据框中进行了更改。
删除值之前的数据框- 删除值

后的数据框:

到此这篇关于Python  处理 Pandas DataFrame 中的行和列的文章就介绍到这了,更多相关Python  Pandas DataFrame 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python  处理 Pandas DataFrame 中的行和列

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何进行Pandas库中时间序列的处理

这期内容当中小编将会给大家带来有关如何进行Pandas库中时间序列的处理,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。在使用Python进行数据分析时,经常会遇到时间日期格式处理和转换,特别是分析和挖掘与
2023-06-02

Pandas中时间序列的处理大全

目录一、时间序列数据的生成二、Pandas设置索引三、 时间序列数据的截取四、Pandas重复值处理4.1 查询是否有重复值4.2 去除重复值五、Pandas缺失值处理5.1 缺失值查询六、pandas统计计算方法七、Pandas数据重采样
2022-06-02

Pandas中时间序列的处理方法

这篇文章主要为大家展示了“Pandas中时间序列的处理方法”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Pandas中时间序列的处理方法”这篇文章吧。一、时间序列数据的生成pd.date_ran
2023-06-15

怎么用python dataframe统计行列中零值的个数

今天小编给大家分享一下怎么用python dataframe统计行列中零值的个数的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧
2023-06-29

Python pandas如何获取数据的行数和列数

本文详细介绍了如何使用Pythonpandas库获取数据框的行数和列数。提供了三种方法来获取行数:使用shape属性、count()方法和info()方法。对于列数,也有三种方法:使用shape属性、shape[1]属性和columns属性。本文还提供了一个示例来演示如何使用这些方法。
Python pandas如何获取数据的行数和列数
2024-04-02

python使用xlsx和pandas处理Excel表格的操作步骤

python的神器pandas库就可以非常方便地处理excel,csv,矩阵,表格等数据,下面这篇文章主要给大家介绍了关于python使用xlsx和pandas处理Excel表格的操作步骤,文中通过图文介绍的非常详细,需要的朋友可以参考下
2023-01-04

Python 中怎么利用Pandas处理复杂的Excel数据

本篇文章为大家展示了Python 中怎么利用Pandas处理复杂的Excel数据,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。问题缘起pandas read_excel函数在读取Excel工作表方
2023-06-16

Python中的Pandas 时间函数 time 、datetime 模块和时间处理基础讲解

Python 中提供了对时间日期的多种多样的处理方式,主要是在 time 和 datetime 这两个模块里,这篇文章主要介绍了Python中的Pandas 时间函数 time 、datetime 模块和时间处理基础,需要的朋友可以参考下
2023-03-23

Unicode和Python的中文处理

在Python语言中,Uincode字符串处理一直是一个容易让人迷惑的问题。许多Python爱好者经常因为搞不清Unicode、UTF-8还有其它许许多多的编码之间的区别而大伤脑筋。笔者曾经也是这“伤脑筋一族”的成员,但经过半年多的努力,现
2022-06-04

Python  序列化反序列化和异常处理的问题小结

这篇文章主要介绍了Python 序列化反序列化和异常处理,本文结合示例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2022-12-23

如何在Python中进行图像处理和识别

如何在Python中进行图像处理和识别摘要:现代技术使得图像处理和识别在许多领域中成为了一个重要的工具。Python作为一种易于学习和使用的编程语言,具有丰富的图像处理和识别库。本文将介绍如何使用Python进行图像处理和识别,并提供具体的
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录