我的编程空间,编程开发者的网络收藏夹
学习永远不晚

还在为MySQL性能优化烦恼?这些总结可以给你扩展思路

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

还在为MySQL性能优化烦恼?这些总结可以给你扩展思路

抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。

 

《阿里巴巴Java开发手册》提出单表行数超过500万行或者单表容量超过2GB,才推荐分库分表。性能由综合因素决定,抛开业务复杂度,影响程度依次是硬件配置、MySQL配置、数据表设计、索引优化。500万这个值仅供参考,并非铁律。微信搜索web_resource 关注获取更多推送。

博主曾经操作过超过4亿行数据的单表,分页查询最新的20条记录耗时0.6秒,SQL语句大致是select field_1,field_2 from table where id < #{prePageMinId} order by id desc limit 20,prePageMinId是上一页数据记录的最小ID。

虽然当时查询速度还凑合,随着数据不断增长,有朝一日必定不堪重负。分库分表是个周期长而风险高的大活儿,应该尽可能在当前结构上优化,比如升级硬件、迁移历史数据等等,实在没辙了再分。对分库分表感兴趣的同学可以阅读分库分表的基本思想。

  • 最大并发数

并发数是指同一时刻数据库能处理多少个请求,由max_connections和max_user_connections决定。max_connections是指MySQL实例的最大连接数,上限值是16384,max_user_connections是指每个数据库用户的最大连接数。

MySQL会为每个连接提供缓冲区,意味着消耗更多的内存。如果连接数设置太高硬件吃不消,太低又不能充分利用硬件。一般要求两者比值超过10%,计算方法如下:

  1. max_used_connections / max_connections * 100% = 3/100 *100% ≈ 3% 

查看最大连接数与响应最大连接数:

  1. show variables like '%max_connections%'
  2. show variables like '%max_user_connections%'

在配置文件my.cnf中修改最大连接数

  1. [mysqld] 
  2. max_connections = 100 
  3. max_used_connections = 20 
  • 查询耗时0.5秒

建议将单次查询耗时控制在0.5秒以内,0.5秒是个经验值,源于用户体验的3秒原则。如果用户的操作3秒内没有响应,将会厌烦甚至退出。响应时间=客户端UI渲染耗时+网络请求耗时+应用程序处理耗时+查询数据库耗时,0.5秒就是留给数据库1/6的处理时间。

实施原则

相比NoSQL数据库,MySQL是个娇气脆弱的家伙。它就像体育课上的女同学,一点纠纷就和同学闹别扭(扩容难),跑两步就气喘吁吁(容量小并发低),常常身体不适要请假(SQL约束太多)。如今大家都会搞点分布式,应用程序扩容比数据库要容易得多,所以实施原则是数据库少干活,应用程序多干活。

  • 充分利用但不滥用索引,须知索引也消耗磁盘和CPU。
  • 不推荐使用数据库函数格式化数据,交给应用程序处理。
  • 不推荐使用外键约束,用应用程序保证数据准确性。
  • 写多读少的场景,不推荐使用唯一索引,用应用程序保证唯一性。
  • 适当冗余字段,尝试创建中间表,用应用程序计算中间结果,用空间换时间。
  • 不允许执行极度耗时的事务,配合应用程序拆分成更小的事务。
  • 预估重要数据表(比如订单表)的负载和数据增长态势,提前优化。

数据表设计

数据类型

数据类型的选择原则:更简单或者占用空间更小。

  • 如果长度能够满足,整型尽量使用tinyint、smallint、medium_int而非int。
  • 如果字符串长度确定,采用char类型。
  • 如果varchar能够满足,不采用text类型。
  • 精度要求较高的使用decimal类型,也可以使用BIGINT,比如精确两位小数就乘以100后保存。
  • 尽量采用timestamp而非datetime。

 

相比datetime,timestamp占用更少的空间,以UTC的格式储存自动转换时区。

  • 避免空值

MySQL中字段为NULL时依然占用空间,会使索引、索引统计更加复杂。从NULL值更新到非NULL无法做到原地更新,容易发生索引分裂影响性能。尽可能将NULL值用有意义的值代替,也能避免SQL语句里面包含is not null的判断。微信搜索web_resource 关注获取更多推送。微信搜索web_resource 关注获取更多推送。

  • text类型优化

由于text字段储存大量数据,表容量会很早涨上去,影响其他字段的查询性能。建议抽取出来放在子表里,用业务主键关联。

索引优化

索引分类

  • 普通索引:最基本的索引。
  • 组合索引:多个字段上建立的索引,能够加速复合查询条件的检索。
  • 唯一索引:与普通索引类似,但索引列的值必须唯一,允许有空值。
  • 组合唯一索引:列值的组合必须唯一。
  • 主键索引:特殊的唯一索引,用于唯一标识数据表中的某一条记录,不允许有空值,一般用primary key约束。
  • 全文索引:用于海量文本的查询,MySQL5.6之后的InnoDB和MyISAM均支持全文索引。由于查询精度以及扩展性不佳,更多的企业选择Elasticsearch。

索引优化

  • 分页查询很重要,如果查询数据量超过30%,MYSQL不会使用索引。
  • 单表索引数不超过5个、单个索引字段数不超过5个。
  • 字符串可使用前缀索引,前缀长度控制在5-8个字符。
  • 字段唯一性太低,增加索引没有意义,如:是否删除、性别。

合理使用覆盖索引,如下所示:

  1. select login_name, nick_name from member where login_name = ? 

login_name, nick_name两个字段建立组合索引,比login_name简单索引要更快。

SQL优化

  • 分批处理

博主小时候看到鱼塘挖开小口子放水,水面有各种漂浮物。浮萍和树叶总能顺利通过出水口,而树枝会挡住其他物体通过,有时还会卡住,需要人工清理。MySQL就是鱼塘,最大并发数和网络带宽就是出水口,用户SQL就是漂浮物。微信搜索web_resource 关注获取更多推送。

不带分页参数的查询或者影响大量数据的update和delete操作,都是树枝,我们要把它打散分批处理,举例说明:

业务描述:更新用户所有已过期的优惠券为不可用状态。

SQL语句:

  1. update status=0 FROM `coupon` WHERE expire_date <= #{currentDate} and status=1; 

如果大量优惠券需要更新为不可用状态,执行这条SQL可能会堵死其他SQL,分批处理伪代码如下:

  1. int pageNo = 1;int PAGE_SIZE = 100;while(true) {    List<Integer>  
  2. batchIdList = queryList('select id FROM `coupon` WHERE expire_date <=  
  3. #{currentDate} and status = 1 limit #{(pageNo-1) * PAGE_SIZE},# 
  4. {PAGE_SIZE}');    if (CollectionUtils.isEmpty(batchIdList)) {    
  5.      return;    }    update('update status = 0 FROM `coupon` where  
  6. status = 1 and id in #{batchIdList}')    pageNo ++;} 

操作符<>优化

通常<>操作符无法使用索引,举例如下,查询金额不为100元的订单:

  1. select id from orders where amount != 100; 

如果金额为100的订单极少,这种数据分布严重不均的情况下,有可能使用索引。鉴于这种不确定性,采用union聚合搜索结果,改写方法如下:

  1. (select id from orders where amount > 100) union all(select id from  
  2. orders where amount < 100 and amount > 0) 

OR优化

在Innodb引擎下or无法使用组合索引,比如:

  1. select id,product_name from orders where mobile_no = '13421800407'  
  2. or user_id = 100; 

OR无法命中mobile_no + user_id的组合索引,可采用union,如下所示:

  1. (select id,product_name from orders where mobile_no = '13421800407')  
  2. union(select id,product_name from orders where user_id = 100); 

此时id和product_name字段都有索引,查询才最高效。

IN优化

IN适合主表大子表小,EXIST适合主表小子表大。由于查询优化器的不断升级,很多场景这两者性能差不多一样了。

尝试改为join查询,举例如下:

  1. select id from orders where user_id in (select id from user where level = 'VIP'); 

采用JOIN如下所示:

  1. select o.id from orders o left join user u on o.user_id = u.id where u.level = 'VIP'

不做列运算

通常在查询条件列运算会导致索引失效,如下所示:

查询当日订单

  1. select id from order where date_format(create_time,'%Y-%m-%d') = '2019-07-01'

date_format函数会导致这个查询无法使用索引,改写后:

  1. select id from order where create_time between '2019-07-01 00:00:00'  
  2. and '2019-07-01 23:59:59'

避免Select all

如果不查询表中所有的列,避免使用SELECT *,它会进行全表扫描,不能有效利用索引。

Like优化

like用于模糊查询,举个例子(field已建立索引):

  1. SELECT column FROM table WHERE field like '%keyword%'

这个查询未命中索引,换成下面的写法:

  1. SELECT column FROM table WHERE field like 'keyword%'

去除了前面的%查询将会命中索引,但是产品经理一定要前后模糊匹配呢?全文索引fulltext可以尝试一下,但Elasticsearch才是终极武器。

Join优化

join的实现是采用Nested Loop Join算法,就是通过驱动表的结果集作为基础数据,通过该结数据作为过滤条件到下一个表中循环查询数据,然后合并结果。如果有多个join,则将前面的结果集作为循环数据,再次到后一个表中查询数据。

驱动表和被驱动表尽可能增加查询条件,满足ON的条件而少用Where,用小结果集驱动大结果集。

被驱动表的join字段上加上索引,无法建立索引的时候,设置足够的Join Buffer Size。

禁止join连接三个以上的表,尝试增加冗余字段。微信搜索web_resource 关注获取更多推送。

Limit优化

limit用于分页查询时越往后翻性能越差,解决的原则:缩小扫描范围,如下所示:

  1. select * from orders order by id desc limit 100000,10 

耗时0.4秒

  1. select * from orders order by id desc limit 1000000,10 

耗时5.2秒

先筛选出ID缩小查询范围,写法如下:

  1. select * from orders where id > (select id from orders order by id desc limit 1000000, 1) order by id desc limit 0,10 

耗时0.5秒

如果查询条件仅有主键ID,写法如下:

  1. select id from orders where id between 1000000 and 1000010 order by id desc 

耗时0.3秒

如果以上方案依然很慢呢?只好用游标了,感兴趣的朋友阅读JDBC使用游标实现分页查询的方法

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

还在为MySQL性能优化烦恼?这些总结可以给你扩展思路

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

还在为MySQL性能优化烦恼?这些总结可以给你扩展思路

抛开数据量和并发数,谈性能都是耍流氓。MySQL没有限制单表最大记录数,它取决于操作系统对文件大小的限制。

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录