我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

引言

深度优先搜索( DFS )和广度优先搜索( BFS )是两种常用的图遍历算法,用于在图中搜索目标节点或遍历图的所有节点。本篇博客将介绍 DFSBFS 算法的基本概念,并通过实例代码演示它们的应用。

😃😄 ❤️ ❤️ ❤️

1. 深度优先搜索( DFS )算法概述

深度优先搜索( DFS )是一种用于遍历或搜索图或树的算法,它从起始节点开始,沿着一条路径一直深入直到无法继续为止,然后回溯到上一个节点继续探索。 DFS 使用栈来记录遍历的路径,它优先访问最近添加到栈的节点。

DFS 的主要优点是简单且易于实现,它不需要额外的数据结构来记录节点的访问情况,仅使用栈来存储遍历路径。然而, DFS 可能会陷入无限循环中,因为它不考虑节点是否已经访问过。

2. 深度优先搜索( DFS )算法实现

实例1:图的 DFS 遍历

# 图的DFS遍历def dfs(graph, start, visited):    # 访问当前节点    print(start, end=' ')    # 标记当前节点为已访问    visited[start] = True    # 遍历当前节点的邻居节点    for neighbor in graph[start]:        # 如果邻居节点未被访问,则继续深度优先搜索        if not visited[neighbor]:            dfs(graph, neighbor, visited)# 图的邻接表表示graph = {    'A': ['B', 'C'],    'B': ['A', 'D', 'E'],    'C': ['A', 'F', 'G'],    'D': ['B'],    'E': ['B'],    'F': ['C'],    'G': ['C']}# 标记节点是否已访问的列表visited = {node: False for node in graph}# 从节点A开始进行DFS遍历print("DFS遍历结果:")dfs(graph, 'A', visited)

代码解释:上述代码演示了使用 DFS 算法遍历图的实例。我们使用邻接表表示图,然后从节点 A 开始进行 DFS 遍历。 DFS 算法通过递归的方式深入遍历每个节点,并使用 visited 字典记录节点是否已经访问过,防止重复访问。

实例2:二叉树的 DFS 遍历

# 二叉树节点定义class TreeNode:    def __init__(self, val):        self.val = val        self.left = None        self.right = None# 二叉树的DFS遍历def dfs_binary_tree(root):    if root is None:        return    print(root.val, end=' ')    dfs_binary_tree(root.left)    dfs_binary_tree(root.right)# 构造二叉树root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)# 二叉树的DFS遍历print("二叉树的DFS遍历结果:")dfs_binary_tree(root)

代码解释:上述代码演示了使用 DFS 算法遍历二叉树的实例。我们构造了一个二叉树,并使用递归的方式进行 DFS 遍历。 DFS 算法沿着左子树一直深入到底,然后再回溯遍历右子树。

3. 广度优先搜索( BFS )算法概述

广度优先搜索( BFS )是一种用于遍历或搜索图或树的算法,它从起始节点开始,逐层地向外扩展,先访问当前节点的所有邻居节点,然后再访问邻居节点的邻居节点,直到遍历完所有节点。

BFS 使用队列来记录遍历的路径,它优先访问最早添加到队列的节点。 BFS 的主要优点是能够找到起始节点到目标节点的最短路径,因为它是逐层遍历的。

4. 广度优先搜索( BFS )算法实现

实例1:图的 BFS 遍历

from collections import deque# 图的BFS遍历def bfs(graph, start):    # 使用队列来记录遍历路径    queue = deque([start])    # 标记节点是否已访问的集合    visited = set([start])    while queue:        node = queue.popleft()        print(node, end=' ')        for neighbor in graph[node]:            if neighbor not in visited:                queue.append(neighbor)                visited.add(neighbor)# 图的邻接表表示graph = {    'A': ['B', 'C'],    'B': ['A', 'D', 'E'],    'C': ['A', 'F', 'G'],    'D': ['B'],    'E': ['B'],    'F': ['C'],    'G': ['C']}# 从节点A开始进行BFS遍历print("BFS遍历结果:")bfs(graph, 'A')

代码解释:上述代码演示了使用 BFS 算法遍历图的实例。我们使用邻接表表示图,然后从节点 A 开始进行 BFS 遍历。 BFS 算法通过使用队列来逐层遍历图的节点,并使用 visited 集合记录节点是否已经访问过,防止重复访问。

实例2:二叉树的 BFS 遍历

from collections import deque# 二叉树节点定义class TreeNode:    def __init__(self, val):        self.val = val        self.left = None        self.right = None# 二叉树的BFS遍历def bfs_binary_tree(root):    if root is None:        return    queue = deque([root])    while queue:        node = queue.popleft()        print(node.val, end=' ')        if node.left:            queue.append(node.left)        if node.right:            queue.append(node.right)# 构造二叉树root = TreeNode(1)root.left = TreeNode(2)root.right = TreeNode(3)root.left.left = TreeNode(4)root.left.right = TreeNode(5)# 二叉树的BFS遍历print("二叉树的BFS遍历结果:")bfs_binary_tree(root)

代码解释:上述代码演示了使用 BFS 算法遍历二叉树的实例。我们构造了一个二叉树,并使用队列来逐层遍历二叉树的节点。 BFS 算法先访问根节点,然后依次将左子节点和右子节点添加到队列中,再逐层遍历子树。

5. DFS 与 BFS 的对比

DFSBFS 是两种不同的图遍历算法,在不同的应用场景下具有不同的优势:

  • DFS 适用于找到起始节点到目标节点的路径,但不一定是最短路径。它通过递归的方式深入探索图的分支,因此对于深度较小的图或树, DFS 通常表现较好。

  • BFS 适用于找到起始节点到目标节点的最短路径。它通过逐层遍历图的节点,从而保证找到的路径是最短的。在需要寻找最短路径的情况下, BFS 是更好的选择。

总结

本篇博客介绍了深度优先搜索( DFS )和广度优先搜索( BFS )算法的基本概念,并通过实例代码演示了它们在图和二叉树遍历中的应用。

DFS 是一种深入探索图或树的算法,通过递归方式遍历每个节点,优先访问最近添加到栈的节点。 BFS 是一种逐层遍历图或树的算法,通过队列来存储遍历路径,优先访问最早添加到队列的节点。

[ 专栏推荐 ]
😃 Python 算法初阶:入门篇》😄
❤️【简介】:本课程是针对 Python 初学者设计的算法基础入门课程,涵盖算法概念、时间复杂度、空间复杂度等基础知识。通过实例演示线性搜索、二分搜索等算法,并介绍哈希表、深度优先搜索、广度优先搜索等搜索算法。此课程将为学员提供扎实的 Python 编程基础与算法入门,为解决实际问题打下坚实基础。

在这里插入图片描述

来源地址:https://blog.csdn.net/qq_38161040/article/details/131799174

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python 算法基础篇:深度优先搜索( DFS )和广度优先搜索( BFS )

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java实现深度优先搜索(DFS)和广度优先搜索(BFS)算法

深度优先搜索(DFS)和广度优先搜索(BFS)是两种基本的图搜索算法,可用于图的遍历、路径搜索等问题。DFS采用栈结构实现,从起点开始往深处遍历,直到找到目标节点或遍历完整个图;BFS采用队列结构实现,从起点开始往广处遍历,直到找到目标节点或遍历完整个图
2023-05-18

Java如何实现基于图的深度优先搜索和广度优先搜索

这篇文章将为大家详细讲解有关Java如何实现基于图的深度优先搜索和广度优先搜索,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。1.新建一个表示“无向图”类NoDirectionGraphpackage co
2023-05-30

调试广度优先搜索 (BFS) 的实现

php小编柚子为您介绍调试广度优先搜索(BFS)的实现。广度优先搜索是一种用于图和树的遍历算法,它从起始节点开始,逐层地访问相邻节点,直到找到目标节点。在实现BFS算法时,调试是非常重要的环节,它可以帮助我们发现代码中的错误和逻辑问题,提高
调试广度优先搜索 (BFS) 的实现
2024-02-10

Python怎么实现图的广度和深度优先路径搜索算法

本篇内容主要讲解“Python怎么实现图的广度和深度优先路径搜索算法”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python怎么实现图的广度和深度优先路径搜索算法”吧!前言图是一种抽象数据结构
2023-06-30

C语言中深度优先搜索(DFS)算法的示例详解

这篇文章主要通过两个简单的示例为大家详细介绍一下C语言中深度优先搜索(DFS)算法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一下
2023-02-16

LeetCode中广度优先搜索算法的示例分析

小编给大家分享一下LeetCode中广度优先搜索算法的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!一、认识广度优先搜索算法广度优先搜索(BFS)算法是图
2023-06-19

C++回溯算法深度优先搜索的示例分析

小编给大家分享一下C++回溯算法深度优先搜索的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!扑克牌全排列假如有编号为1~ 3的3张扑克牌和编号为1~3的3个盒子,现在需要将3张牌分别放到3个盒子中去,且每个盒子只能
2023-06-29

C++回溯算法之深度优先搜索详细介绍

回溯在迷宫搜索中使用很常见,就是这条路走不通,然后返回前一个路口,继续下一条路。回溯算法说白了就是穷举法,下面让我们一起来看看回溯算法中深度优先搜索吧
2023-01-13

Python怎么使用广度优先搜索遍历混乱地铁

这篇文章主要介绍“Python怎么使用广度优先搜索遍历混乱地铁”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“Python怎么使用广度优先搜索遍历混乱地铁”文章能帮助大家解决问题。混乱地铁问题【问题描
2023-07-05

Python使用广度优先搜索遍历混乱地铁问题

这篇文章主要介绍了Python使用广度优先搜索遍历混乱地铁问题,广度优先搜索算法(又称宽度优先搜索)是最简便的图的搜索算法之一,这一算法也是很多重要的图的算法的原型,需要的朋友可以参考下
2023-05-14

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录