我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【数据结构】 时间和空间复杂度

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【数据结构】 时间和空间复杂度

文章目录

如何衡量一个算法的好坏

在这里插入图片描述
我们知道一道题,有许多种代码可以实现它。但是我们应该怎么去选择呢?

比如博主在前面讲过的斐波那契数,我们可以用递归和循环来实现。那么到底那一种方法好呢?为什么?该如何衡量一个算法的好坏呢?这就涉及到了一个新的概念——算法效率

算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率时间效率被称为时间复杂度而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间

在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度。

时间复杂度

在这里插入图片描述

时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。

但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度

求时间复杂度我们使用大O渐近表示法

大O渐近表示法

比如我现在有以下程序,我们来看一下它执行了多少次?

void func1(int N){int count = 0;for (int i = 0; i < N ; i++) {for (int j = 0; j < N ; j++) {count++;}}for (int k = 0; k < 2 * N ; k++) {count++;} int M = 10;while ((M--) > 0) {count++;} System.out.println(count);}

我们对此程序进行分析得
在这里插入图片描述
所以总的Func1 执行的基本操作次数 :
在这里插入图片描述
当我们得N不同时,执行次数也就不同

  • N = 10 F(N) = 130
  • N = 100 F(N) = 10210
  • N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐近表示法

大O符号(Big O notation):是用于描述函数渐近行为的数学符号

我们该如何使用大O的渐近表示法呢?

其实当我们写出了Func1 执行的基本操作次数后,我们只需要对该次数得表达式进行简单得推导就好

推导大O阶方法

  • 用常数1取代运行时间中的所有加法常数
  • 在修改后的运行次数函数中,只保留最高阶项
  • 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。使用大O的渐进表示法以后,Func1的时间复杂度为
    在这里插入图片描述

这时候我们对N进行不同赋值时

  • N = 10 F(N) = 100
  • N = 100 F(N) = 10000
  • N = 1000 F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数

另外有些算法的时间复杂度存在最好、平均和最坏情况:

  • 最坏情况:任意输入规模的最大运行次数(上界)
  • 平均情况:任意输入规模的期望运行次数
  • 最好情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N数组中搜索一个数据x

  • 最好情况:1次找到
  • 最坏情况:N次找到
  • 平均情况:N/2次找到

在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

常见的时间复杂度计算

计算分为两步

  1. 计算程序执行次数
  2. 推导大O阶方法

【实例1】

void func2(int N) {int count = 0;for (int k = 0; k < 2 * N ; k++) {count++;} int M = 10;while ((M--) > 0) {count++;} System.out.println(count);}

第一步
在这里插入图片描述
第二步,通过推导大O阶方法知道,时间复杂度为 O(N)

【实例2】

void func3(int N, int M) {int count = 0;for (int k = 0; k < M; k++) {count++;} for (int k = 0; k < N ; k++) {count++;} System.out.println(count);}

第一步,计算程序执行次数
在这里插入图片描述
第二步,有两个未知数M和N,时间复杂度为 O(N+M)

【实例三】

void func4(int N) {int count = 0;for (int k = 0; k < 100; k++) {count++;} System.out.println(count);}

第一步,计算程序次数
在这里插入图片描述
第二步,通过推导大O阶方法,时间复杂度为 O(1)

【实例四】

void bubbleSort(int[] array) {for (int end = array.length; end > 0; end--) {boolean sorted = true;for (int i = 1; i < end; i++) {if (array[i - 1] > array[i]) {Swap(array, i - 1, i);sorted = false;}} if(sorted == true) {break;}}}

第一步,计算程序执行次数

此代码为冒泡排序,我们发现它的每一次循环的执行次数构成等差数列
在这里插入图片描述
我们只需要用等差数列求和公式进行求和即可。所以程序的总次数为:(N*(N-1))/2次

第二步,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)

【实例五】

int binarySearch(int[] array, int value) {int begin = 0;int end = array.length - 1;while (begin <= end) {int mid = begin + ((end-begin) / 2);if (array[mid] < value)begin = mid + 1;else if (array[mid] > value)end = mid - 1;elsereturn mid;} return -1;}

第一步,计算程序执行次数

此代码为一个二分查找,每一次查找,所查找查找数据都会减半,直到数据量减为1;
在这里插入图片描述
我们通过简单的观察和思考后不难得出执行次数为:
在这里插入图片描述
第二步,通过推导大O阶方法+时间复杂度一般看最坏,所以时间复杂度为
在这里插入图片描述
在算法分析中表示是底数为2,对数为N,有些地方会写成lgN。

【实例六】

long factorial(int N) {return N < 2 ? N : factorial(N-1) * N;}

第一步,通过计算分析不难发现发现基本操作递归了N次

第二不,通过推导大O阶方法,时间复杂度为 O(N)

【实例七】

int fibonacci(int N) {return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);}

第一步,计算总执行次数,通过画图我们发现它的执行次数是一个等比数列
在这里插入图片描述
我们只需要使用等比数列求和公式就可以了,得出为在这里插入图片描述
第二步,通过推导大O阶方法+时间复杂度一般看最坏,所以时间复杂度为O(2^N)

空间复杂度

在这里插入图片描述

空间复杂度是对一个算法在运行过程中==临时占用存储空间大小的量度 ==。

空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟时间复杂度类似,也使用大O渐进表示法

空间复杂度计算

【实例一】

void bubbleSort(int[] array) {for (int end = array.length; end > 0; end--) {boolean sorted = true;for (int i = 1; i < end; i++) {if (array[i - 1] > array[i]) {Swap(array, i - 1, i);sorted = false;}} if(sorted == true) {break;}}}

实例1使用了常数个额外空间,也就是创建了sorted变量,所以空间复杂度为 O(1)

【实例二】

int[] fibonacci(int n) {long[] fibArray = new long[n + 1];fibArray[0] = 0;fibArray[1] = 1;for (int i = 2; i <= n ; i++) {fibArray[i] = fibArray[i - 1] + fibArray [i - 2];}return fibArray;}

实例2动态开辟了N个空间,空间复杂度为 O(N)
在这里插入图片描述

【实例三】

long factorial(int N) {return N < 2 ? N : factorial(N-1)*N;}

实例3递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

总结

关于《 【数据结构】 时间和空间复杂度》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

来源地址:https://blog.csdn.net/m0_71731682/article/details/132301180

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【数据结构】 时间和空间复杂度

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C语言数据结构的时间复杂度和空间复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度,感兴趣的同学可以参考阅读
2023-05-15

C语言数据结构的时间复杂度和空间复杂度实例分析

这篇文章主要讲解了“C语言数据结构的时间复杂度和空间复杂度实例分析”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“C语言数据结构的时间复杂度和空间复杂度实例分析”吧!一、数据结构前言
2023-07-06

如何解析Java 数据结构中时间复杂度与空间复杂度

这篇文章给大家介绍如何解析Java 数据结构中时间复杂度与空间复杂度,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。算法效率在使用当中,算法效率分为两种,一是时间效率(时间复杂度),二是空间效率(空间复杂度)。时间复杂度
2023-06-25

JavaScript时间复杂度和空间复杂度实例分析

本篇内容主要讲解“JavaScript时间复杂度和空间复杂度实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“JavaScript时间复杂度和空间复杂度实例分析”吧!前言时间复杂度和空间复杂
2023-07-02

C语言数据结构与算法时间空间复杂度实例分析

这篇文章主要介绍“C语言数据结构与算法时间空间复杂度实例分析”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“C语言数据结构与算法时间空间复杂度实例分析”文章能帮助大家解决问题。时间复杂度来看第一个:l
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录