基于yolov5与Deep Sort的流量统计与轨迹跟踪
系列文章目录
目标跟踪——SORT算法原理浅析
目标跟踪——Deep Sort算法原理浅析
基于yolov5与Deep Sort的流量统计与轨迹跟踪
文章目录
前言
先来看下实现效果:
上图展示了用yolov5作为检测器,Deep Sort为追踪器实现了对车流量的统计并绘制了每辆车的运行轨迹。
一、整体目录结构
下图展示了项目的整体目录结构:
其中:
deep_sort
文件下为目标跟踪相关代码;
weights
文件夹下存放yolov5检测模型;
demo.py
针对读取的视频进行目标追踪
objdetector.py
封装的一个目标检测器,对视频中的物体进行检测
objtracker.py
封装了一个目标追踪器,对检测的物体进行追踪
二、Deep Sort代码参数解释
deep_sort/configs/deep_sort.yaml
文件里保存了Deep Sort算法的配置参数:
这些参数依次的含义为:
REID_CKPT:
特征提取权重的目录路径MAX_DIST:
最大余弦距离,用于级联匹配,如果大于该阈值,则忽略MIN_CONFIDENCE:
检测结果置信度阈值NMS_MAX_OVERLAP:
非极大抑制阈值,设置为1代表不进行抑制MAX_IOU_DISTANCE:
最大IOU阈值MAX_AGE:
最大寿命,也就是经过MAX_AGE帧没有追踪到该物体,就将该轨迹变为删除态N_INIT:
最高击中次数,如果击中该次数,就由不确定态转为确定态NN_BUDGET:
最大保存特征帧数,如果超过该帧数,将进行滚动保存
三、代码展示
下面给出demo.py
的代码:
import numpy as npimport objtrackerfrom objdetector import Detectorimport cv2VIDEO_PATH = './video/test_traffic.mp4'if __name__ == '__main__': # 根据视频尺寸,填充供撞线计算使用的polygon width = 1920 height = 1080 mask_image_temp = np.zeros((height, width), dtype=np.uint8) # 用于记录轨迹信息 pts = {} # 填充第一个撞线polygon(蓝色) list_pts_blue = [[204, 305], [227, 431], [605, 522], [1101, 464], [1900, 601], [1902, 495], [1125, 379], [604, 437], [299, 375], [267, 289]] ndarray_pts_blue = np.array(list_pts_blue, np.int32) polygon_blue_value_1 = cv2.fillPoly(mask_image_temp, [ndarray_pts_blue], color=1) polygon_blue_value_1 = polygon_blue_value_1[:, :, np.newaxis] # 填充第二个撞线polygon(黄色) mask_image_temp = np.zeros((height, width), dtype=np.uint8) list_pts_yellow = [[181, 305], [207, 442], [603, 544], [1107, 485], [1898, 625], [1893, 701], [1101, 568], [594, 637], [118, 483], [109, 303]] ndarray_pts_yellow = np.array(list_pts_yellow, np.int32) polygon_yellow_value_2 = cv2.fillPoly(mask_image_temp, [ndarray_pts_yellow], color=2) polygon_yellow_value_2 = polygon_yellow_value_2[:, :, np.newaxis] # 撞线检测用的mask,包含2个polygon,(值范围 0、1、2),供撞线计算使用 polygon_mask_blue_and_yellow = polygon_blue_value_1 + polygon_yellow_value_2 # 缩小尺寸,1920x1080->960x540 polygon_mask_blue_and_yellow = cv2.resize(polygon_mask_blue_and_yellow, (width // 2, height // 2)) # 蓝 色盘 b,g,r blue_color_plate = [255, 0, 0] # 蓝 polygon图片 blue_image = np.array(polygon_blue_value_1 * blue_color_plate, np.uint8) # 黄 色盘 yellow_color_plate = [0, 255, 255] # 黄 polygon图片 yellow_image = np.array(polygon_yellow_value_2 * yellow_color_plate, np.uint8) # 彩色图片(值范围 0-255) color_polygons_image = blue_image + yellow_image # 缩小尺寸,1920x1080->960x540 color_polygons_image = cv2.resize(color_polygons_image, (width // 2, height // 2)) # list 与蓝色polygon重叠 list_overlapping_blue_polygon = [] # list 与黄色polygon重叠 list_overlapping_yellow_polygon = [] # 下行数量 down_count = 0 # 上行数量 up_count = 0 font_draw_number = cv2.FONT_HERSHEY_SIMPLEX draw_text_postion = (int((width / 2) * 0.01), int((height / 2) * 0.05)) # 实例化yolov5检测器 detector = Detector() # 打开视频 capture = cv2.VideoCapture(VIDEO_PATH) while True: # 读取每帧图片 _, im = capture.read() if im is None: break # 缩小尺寸,1920x1080->960x540 im = cv2.resize(im, (width // 2, height // 2)) list_bboxs = [] # 更新跟踪器 output_image_frame, list_bboxs = objtracker.update(detector, im) # 输出图片 output_image_frame = cv2.add(output_image_frame, color_polygons_image) if len(list_bboxs) > 0: # ----------------------判断撞线---------------------- for item_bbox in list_bboxs: x1, y1, x2, y2, _, track_id = item_bbox # 撞线检测点,(x1,y1),y方向偏移比例 0.0~1.0 y1_offset = int(y1 + ((y2 - y1) * 0.5)) x1_offset = int(x1 + ((x2 - x1) * 0.5)) # 撞线的点 y = y1_offset x = x1_offset # 然后每检测出一个预测框,就将中心点加入队列 center = (x, y) if track_id in pts: pts[track_id].append(center) else: pts[track_id] = [] pts[track_id].append(center) thickness = 2 cv2.circle(output_image_frame, (center), 1, [255, 255, 255], thickness) for j in range(1, len(pts[track_id])): if pts[track_id][j - 1] is None or pts[track_id][j] is None: continue cv2.line(output_image_frame, (pts[track_id][j - 1]), (pts[track_id][j]), [255, 255, 255], thickness) if polygon_mask_blue_and_yellow[y, x] == 1: # 如果撞 蓝polygon if track_id not in list_overlapping_blue_polygon: list_overlapping_blue_polygon.append(track_id) # 判断 黄polygon list里是否有此 track_id # 有此track_id,则认为是 UP (上行)方向 if track_id in list_overlapping_yellow_polygon: # 上行+1 up_count += 1 print('up count:', up_count, ', up id:', list_overlapping_yellow_polygon) # 删除 黄polygon list 中的此id list_overlapping_yellow_polygon.remove(track_id) elif polygon_mask_blue_and_yellow[y, x] == 2: # 如果撞 黄polygon if track_id not in list_overlapping_yellow_polygon: list_overlapping_yellow_polygon.append(track_id) # 判断 蓝polygon list 里是否有此 track_id # 有此 track_id,则 认为是 DOWN(下行)方向 if track_id in list_overlapping_blue_polygon: # 下行+1 down_count += 1 print('down count:', down_count, ', down id:', list_overlapping_blue_polygon) # 删除 蓝polygon list 中的此id list_overlapping_blue_polygon.remove(track_id) # ----------------------清除无用id---------------------- list_overlapping_all = list_overlapping_yellow_polygon + list_overlapping_blue_polygon for id1 in list_overlapping_all: is_found = False for _, _, _, _, _, bbox_id in list_bboxs: if bbox_id == id1: is_found = True if not is_found: # 如果没找到,删除id if id1 in list_overlapping_yellow_polygon: list_overlapping_yellow_polygon.remove(id1) if id1 in list_overlapping_blue_polygon: list_overlapping_blue_polygon.remove(id1) list_overlapping_all.clear() # 清空list list_bboxs.clear() else: # 如果图像中没有任何的bbox,则清空list list_overlapping_blue_polygon.clear() list_overlapping_yellow_polygon.clear() # 输出计数信息 text_draw = 'DOWN: ' + str(down_count) + \ ' , UP: ' + str(up_count) output_image_frame = cv2.putText(img=output_image_frame, text=text_draw, org=draw_text_postion, fontFace=font_draw_number, fontScale=0.75, color=(0, 0, 255), thickness=2) cv2.imshow('Counting Demo', output_image_frame) cv2.waitKey(1) capture.release() cv2.destroyAllWindows()
若需要更改模型,只需要更改objdetector.py
下面的给出的部分:
OBJ_LIST = ['person', 'car', 'bus', 'truck']DETECTOR_PATH = 'weights/yolov5m.pt'
总结
本篇文章给出了基于yolov5与Deep Sort的流量统计与轨迹跟踪的实例,在项目中有着实际的应用场景。
下面给出源码地址,欢迎star
:
https://github.com/JulyLi2019/yolov5-deepsort/releases/tag/V1.0,yolov5-deepsort.zip文件
如果阅读本文对你有用,欢迎一键三连呀!!!
2022年4月15日09:59:53
来源地址:https://blog.csdn.net/JulyLi2019/article/details/124047020
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341