我的编程空间,编程开发者的网络收藏夹
学习永远不晚

利用Python解决Excel问题的最佳方案总结

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

利用Python解决Excel问题的最佳方案总结

「问题说明」

这次要处理的excel有两个sheet,要根据其中一个sheet的数据来计算另外一个sheet的值。造成问题的点在于,要计算值的sheet里不仅仅有数值,还有公式。我们来看一下:

如上图所示,这个excel一共有两个sheet:CP和DS,我们要按照一定的业务规则,根据CP中的数据计算DS对应单元格的数据。图中蓝色方框框出来的是带公式的,而其他区域是数值。

我们来看看,如果我们按照之前说的处理逻辑,把excel一次性批量读取到dataframe处理,然后再一次性批量写回去有啥问题。这部分代码如下:

import pandas as pd
import xlwings as xw
 
#要处理的文件路径
fpath = "data/DS_format.xlsm"
 
#把CP和DS两个sheet的数据分别读入pandas的dataframe
cp_df = pd.read_excel(fpath,sheet_name="CP",header=[0])
ds_df = pd.read_excel(fpath,sheet_name="DS",header=[0,1])
 
#计算过程省略......
 
#保存结果到excel       
app = xw.App(visible=False,add_book=False)
ds_format_workbook = app.books.open(fpath)
ds_worksheet = ds_format_workbook.sheets["DS"]
ds_worksheet.range("A1").expand().options(index=False).value = ds_df 
ds_format_workbook.save()
ds_format_workbook.close()
app.quit()

如上代码存在的问题在于,pd.read_excel()方法从excel里读取数据到dataframe的时候,对于有公式的单元格,会直接读取公式计算的结果(如果没有结果则返回Nan),而我们写入excel的时候是直接把dataframe一次性批量写回的,这样之前带公式的单元格,被写回的就是计算出来的值或Nan,而丢掉了公式。

好了,问题出现了,我们该如何解决呢?这里会想到两个思路:

  • dataframe写回excel的时候,不要一次性批量写回,而是通过行和列的迭代,只写回计算的数据,有公式的单元格不动;
  • 读取excel的时候,有没有办法做到对于有公式的单元格,读取公式,而不是读取公式计算的结果;

我确实按照上面两个思路分别尝试了一下,我们一起来看一下。

「方案1」

如下代码尝试遍历dataframe然后按单元格写入对应的值,有公式的单元格不动

#根据ds_df来写excel,只写该写的单元格
for row_idx,row in ds_df.iterrows():
    total_capabity_val = row[('Total','Capabity')].strip()
    total_capabity1_val = row[('Total','Capabity.1')].strip()
    #Total和1Gb  Eqv.所在的行不写
    if total_capabity_val!= 'Total' and total_capabity_val != '1Gb  Eqv.':
        #给Delta和LOI赋值
        if total_capabity1_val == 'LOI' or total_capabity1_val == 'Delta':
            ds_worksheet.range((row_idx + 3 ,3)).value = row[('Current week','BOH')]
            print(f"ds_sheet的第{row_idx + 3}行第3列被设置为{row[('Current week','BOH')]}") 
        #给Demand和Supply赋值
        if total_capabity1_val == 'Demand' or total_capabity1_val == 'Supply':
            cp_datetime_columns = cp_df.columns[53:]
            for col_idx in range(4,len(ds_df.columns)):
                ds_datetime = ds_df.columns.get_level_values(1)[col_idx]
                ds_month = ds_df.columns.get_level_values(0)[col_idx]
                if type(ds_datetime) == str and ds_datetime != 'TTL' and ds_datetime != 'Total' and (ds_datetime in cp_datetime_columns):
                    ds_worksheet.range((row_idx + 3,col_idx + 1)).value = row[(f'{ds_month}',f'{ds_datetime}')]
                    print(f"ds_sheet的第{row_idx + 3}行第{col_idx + 1}列被设置为{row[(f'{ds_month}',f'{ds_datetime}')]}") 
                elif type(ds_datetime) == datetime.datetime and (ds_datetime in cp_datetime_columns):
                    ds_worksheet.range((row_idx + 3,col_idx + 1)).value = row[(f'{ds_month}',ds_datetime)]     
                    print(f"ds_sheet的第{row_idx + 3}行第{col_idx + 1}列被设置为{row[(f'{ds_month}',ds_datetime)]}")   

如上的代码确实解决了问题,也即有公式的单元格的公式被保留了。但是,根据我们文章开头提到的Python处理excel的忠告,这个代码是有严重性能问题的,因为它通过api频繁操作excel的单元格,导致写入非常慢,在我的老迈Mac本上一共跑了40分钟,简直不可接受,故该方案只能放弃。

「方案2」

这个方案是希望做到读取excel有公式值的单元格的时候,能保留公式值。这只能从各个Python的excel库的API来寻找有无对应的方法了。Pandas的read_excel()方法我仔细看了一下没有对应的参数可以支持。Openpyxl我倒是找到了一个API可以支持,如下:

import openpyxl
ds_format_workbook = openpyxl.load_workbook(fpath,data_only=False)
ds_wooksheet = ds_format_workbook['DS']
ds_df =  pd.DataFrame(ds_wooksheet.values)

关键是这里的data_only参数,为True则返回数据,为False的情况下可以保留公式值

本以为找到了对应解决方案正一顿窃喜,但当我看到通过openpyxl读取到dataframe中的数据结构的时候,才被破了一盆冷水。因为我的excel表的表头是比较复杂的两级的表头,表头中还存在合并和拆分单元格的情况,这样的表头被openpyxl读取到dataframe后,没有按照pandas的多级索引进行处理,而是简单的被处理成数字索引0123...

但我对dataframe的计算会依赖多级索引,因此openpyxl的这种处理方式导致我后面的计算无法处理。

openpyxl不行,再看看xlwings呢?通过对xlwings API文档的一通寻找,还真给我找到了,如下所示:

Range类提供了一个Property叫formula,可以获取和设置formula。

看到这个我简直如获至宝,赶紧代码操练起来。也许出于惯性,又或许是被之前按行列单元格操作excel的效率搞怕了,我直接先想到的方案还是一次性批量搞定,也即一次性读取excel所有的公式,然后再一次性写回去,所以我一开始的代码是这样的:

#使用xlwings来读取formula
app = xw.App(visible=False,add_book=False)
ds_format_workbook = app.books.open(fpath)
ds_worksheet = ds_format_workbook.sheets["DS"]
#先把所有公式一次性读取并保存下来
formulas = ds_worksheet.used_range.formula
 
#中间计算过程省略...
 
#一次性把所有公式写回去
ds_worksheet.used_range.formula = formulas 

可是我想错了,ds_worksheet.used_range.formula让我误解只会返回excel中的有公式的单元格的公式,但其实它返回的是所有的单元格,只是对有公式的单元格保留了公式。所以,当我重新写回公式的时候,会覆盖掉我通过dataframe计算完并写入excel的其他的值。

既然这样的话,那我只能对有公式的单元格分别处理而不是一次性处理了,所以代码得这样写:

#使用xlwings来读取formula
app = xw.App(visible=False,add_book=False)
ds_format_workbook = app.books.open(fpath)
ds_worksheet = ds_format_workbook.sheets["DS"]
 
#保留excel中的formula
#找到DS中Total所在的行,Total之后的行都是formula
row = ds_df.loc[ds_df[('Total','Capabity')]=='Total ']
total_row_index = row.index.values[0]
#获取对应excel的行号(dataframe把两层表头当做索引,从数据行开始计数,而且从0开始计数。excel从表头就开始计数,而且从1开始计数)
excel_total_row_idx = int(total_row_index+2)
#获取excel最后一行的索引
excel_last_row_idx = ds_worksheet.used_range.rows.count
#保留按日期计算的各列的formula
I_col_formula = ds_worksheet.range(f'I3:I{excel_total_row_idx}').formula
N_col_formula = ds_worksheet.range(f'N3:N{excel_total_row_idx}').formula
T_col_formula = ds_worksheet.range(f'T3:T{excel_total_row_idx}').formula
U_col_formula = ds_worksheet.range(f'U3:U{excel_total_row_idx}').formula
Z_col_formula = ds_worksheet.range(f'Z3:Z{excel_total_row_idx}').formula
AE_col_formula = ds_worksheet.range(f'AE3:AE{excel_total_row_idx}').formula
AK_col_formula = ds_worksheet.range(f'AK3:AK{excel_total_row_idx}').formula
AL_col_formula = ds_worksheet.range(f'AL3:AL{excel_total_row_idx}').formula
#保留Total行开始一直到末尾所有行的formula
total_to_last_formula = ds_worksheet.range(f'A{excel_total_row_idx+1}:AL{excel_last_row_idx}').formula
 
#中间计算过程省略...
 
#保存结果到excel                 
#直接把ds_df完整赋值给excel,会导致excel原有的公式被值覆盖
ds_worksheet.range("A1").expand().options(index=False).value = ds_df 
#用之前保留的formulas,重置公式
ds_worksheet.range(f'I3:I{excel_total_row_idx}').formula = I_col_formula
ds_worksheet.range(f'N3:N{excel_total_row_idx}').formula = N_col_formula
ds_worksheet.range(f'T3:T{excel_total_row_idx}').formula = T_col_formula
ds_worksheet.range(f'U3:U{excel_total_row_idx}').formula = U_col_formula
ds_worksheet.range(f'Z3:Z{excel_total_row_idx}').formula = Z_col_formula
ds_worksheet.range(f'AE3:AE{excel_total_row_idx}').formula = AE_col_formula
ds_worksheet.range(f'AK3:AK{excel_total_row_idx}').formula = AK_col_formula
ds_worksheet.range(f'AL3:AL{excel_total_row_idx}').formula = AL_col_formula
ds_worksheet.range(f'A{excel_total_row_idx+1}:AL{excel_last_row_idx}').formula = total_to_last_formula
 
ds_format_workbook.save()
ds_format_workbook.close()
app.quit()

经测试,如上代码完美地解决我的需求,而且性能上也完全没问题。

「写在最后」

通过这几次用Python对Excel进行处理的实践,让我深刻感觉到,Pandas用于对Excel数据的高效内存计算是很不错的,但涉及到对Excel的读写以及一些跟样式、格式相关的操作,还是得依赖xlwings或openpyxl等其他库来完成,因此,在用Python处理Excel的场景,最佳方案是将Pandas和xlwings或openpyxl等库结合起来一起使用是最佳组合。

到此这篇关于利用Python解决Excel问题的文章就介绍到这了,更多相关Python解决Excel问题内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

利用Python解决Excel问题的最佳方案总结

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

利用Python解决Excel问题的最佳方案总结

python处理excel文件有很多方法,最开始接触的是xlrd、xlsxwriter模块,分别用于excel文件的读、写,后来又学习了openpyxl模块,可以同时完成excel文件的读、写,下面这篇文章主要给大家介绍了关于利用Python解决Excel问题的最佳方案,需要的朋友可以参考下
2023-05-15

Go语言编程的最佳实践和常见问题解决方案

在当今互联网高速发展的时代,编程语言的选择至关重要。Go语言作为一种快速、高效、易于学习和使用的编程语言,受到了越来越多开发者的青睐。然而,虽然Go语言具有许多优点,但在实际开发中也会遇到一些常见问题。本文将介绍Go语言编程的最佳实践和一些
Go语言编程的最佳实践和常见问题解决方案
2024-03-01

Android应用中使用Fragment组件的一些问题及解决方案总结

Fragment的主要意义就是提供与Activity绑定的生命周期回调。 Fragment不一定要向Activity的视图层级中添加View. 当某个模块需要获得Activity的生命周期回调的时候,就可以考虑通过Fragment来实现.
2022-06-06

Web项目部署在Tomcat上的最佳实践和常见问题解决方案

Tomcat部署Web项目的最佳实践和常见问题解决方法引言:Tomcat作为一个轻量级的Java应用服务器,在Web应用开发中得到了广泛应用。本文将介绍Tomcat部署Web项目的最佳实践和常见问题解决方法,并提供具体的代码示例,帮助读者更
Web项目部署在Tomcat上的最佳实践和常见问题解决方案
2023-12-29

Win7字体模糊不清晰的最佳解决方法个人总结相当实用

相信初次用win7的朋友,都会遇到字体不清晰的问题,有很多人因为这个问题而放弃使用win7,真是太可惜了。偶最近认真研究试过各办法,最终问题得到大大的解决,先看下效果,是不是跟Win XP的没什么区别?win7界面文字清楚很多,改之前的没有
2023-05-31

选择适合你项目的最佳缓存解决方案:Python常用的缓存库和工具

Python中常用的缓存库和工具:选择适合你项目的最佳方案,需要具体代码示例引言:在开发Python项目时,为了提高程序的性能和响应速度,常常会使用缓存来存储计算结果或者频繁读取的数据。使用缓存可以减少对底层数据库或其他外部依赖的访问,从
选择适合你项目的最佳缓存解决方案:Python常用的缓存库和工具
2024-01-23

利用MongoDB技术开发中遇到的数据分片问题的解决方案探究

利用MongoDB技术开发中遇到的数据分片问题的解决方案探究概述:随着数据存储和处理需求的不断增长,单个MongoDB服务器可能无法满足高性能和高可用性的要求。此时,数据分片(sharding)成为了解决方案之一。本文将针对在使用Mongo
2023-10-22

利用MongoDB技术开发中遇到的并发控制问题的解决方案探究

利用MongoDB技术开发中遇到的并发控制问题的解决方案探究摘要:随着互联网技术的快速发展,数据量的不断增大和用户数的不断增加,对于大型应用程序而言,并发控制变得愈发重要。并发控制问题是指在多个用户同时对同一个数据进行读写操作时,可能导致数
2023-10-22

利用MongoDB技术开发中遇到的数据同步问题的解决方案探究

标题:MongoDB数据同步问题的解决方案探究摘要:随着大数据时代的来临,数据同步问题在开发过程中变得越来越重要。本文将探究利用MongoDB技术开发过程中遇到的数据同步问题,并提出解决方案,以及附带具体代码示例。引言MongoDB作为一种
2023-10-22

利用MongoDB技术开发中遇到的数据加载问题的解决方案探究

利用MongoDB技术开发中遇到的数据加载问题的解决方案探究摘要:在利用MongoDB技术进行开发过程中,数据加载是一个重要的环节。然而,由于数据量大、索引创建等因素,数据加载的过程中往往会遇到一些问题,例如加载时间过长、数据写入慢等。本文
2023-10-22

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录