我的编程空间,编程开发者的网络收藏夹
学习永远不晚

利用pandas进行数据清洗的方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

利用pandas进行数据清洗的方法

我们有下面的一个数据,利用其做简单的数据分析。

在这里插入图片描述

这是一家服装店统计的会员数据。最上面的一行是列坐标,最左侧一列是行坐标。列坐标中,第 0 列代表的是序号,第 1 列代表的会员的姓名,第 2 列代表年龄,第 3 列代表体重,第 4~6 列代表男性会员的三围尺寸,第 7~9 列代表女性会员的三围尺寸。

数据清洗规则总结为以下 4 个关键点,统一起来叫“完全合一”,下面来解释下:

  • 完整性:单条数据是否存在空值,统计的字段是否完善。
  • 全面性:观察某一列的全部数值,比如在 Excel 表中,我们选中一列,可以看到该列的平均值、最大值、最小值。我们可以通过常识来判断该列是否有问题,比如:数据定义、单位标识、数值本身。
  • 合法性:数据的类型、内容、大小的合法性。比如数据中存在非 ASCII 字符,性别存在了未知,年龄超过了 150 岁等。
  • 唯一性:数据是否存在重复记录,因为数据通常来自不同渠道的汇总,重复的情况是常见的。行数据、列数据都需要是唯一的,比如一个人不能重复记录多次,且一个人的体重也不能在列指标中重复记录多次。

1、完整性

1.1 缺失值

一般情况下,由于数据量巨大,在采集数据的过程中,会出现有些数据单元没有被采集到,也就是数据存在缺失。通常面对这种情况,我们可以采用以下三种方法:

  • 删除:删除数据缺失的记录
  • 均值:使用当前列的均值填充
  • 高频:使用当前列出现频率最高的数据

比如我们相对data[‘Age']中缺失的数值使用平均年龄进行填充,可以写:


df['Age'].fillna(df['Age'].mean(), inplace=True)

如果我们用最高频的数据进行填充,可以先通过 value_counts 获取 Age 字段最高频次 age_maxf,然后再对 Age 字段中缺失的数据用 age_maxf 进行填充:


age_maxf = train_features['Age'].value_counts().index[0]
train_features['Age'].fillna(age_maxf, inplace=True)

1.2 空行

我们发现数据中有一个空行,除了 index 之外,全部的值都是 NaN。Pandas 的 read_csv() 并没有可选参数来忽略空行,这样,我们就需要在数据被读入之后再使用 dropna() 进行处理,删除空行。


# 删除全空的行
df.dropna(how='all',inplace=True) 

2、全面性

列数据的单位不统一

如果某一列数据其单位并不统一,比如weight列,有的单位为千克(Kgs),有的单位是磅(Lbs)。
这里我们使用千克作为统一的度量单位,将磅转化为千克:


# 获取 weight 数据列中单位为 lbs 的数据
rows_with_lbs = df['weight'].str.contains('lbs').fillna(False)
print df[rows_with_lbs]
# 将 lbs转换为 kgs, 2.2lbs=1kgs
for i,lbs_row in df[rows_with_lbs].iterrows():
  # 截取从头开始到倒数第三个字符之前,即去掉lbs。
  weight = int(float(lbs_row['weight'][:-3])/2.2)
  df.at[i,'weight'] = '{}kgs'.format(weight) 

3、合理性

 非ASCII字符

假设在数据集中 Firstname 和 Lastname 有一些非 ASCII 的字符。我们可以采用删除或者替换的方式来解决非 ASCII 问题,这里我们使用删除方法,也就是用replace方法:


# 删除非 ASCII 字符
df['first_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)
df['last_name'].replace({r'[^\x00-\x7F]+':''}, regex=True, inplace=True)

4、唯一性

4.1 一列有多个参数

假设姓名(Name)包含了两个参数 Firstname和Lastname。为了达到数据整洁的目的,我们将 Name 列拆分成 Firstname 和 Lastname 两个字段。我们使用 Python 的 split 方法,str.split(expand=True),将列表拆成新的列,再将原来的 Name 列删除。


# 切分名字,删除源数据列
df[['first_name','last_name']] = df['name'].str.split(expand=True)
df.drop('name', axis=1, inplace=True)

4.2 重复数据

我们校验一下数据中是否存在重复记录。如果存在重复记录,就使用 Pandas 提供的 drop_duplicates() 来删除重复数据。


# 删除重复数据行
df.drop_duplicates(['first_name','last_name'],inplace=True)

这样,我们就将上面案例中中的会员数据进行了清理,来看看清理之后的数据结果。

在这里插入图片描述

到此这篇关于利用pandas进行数据清洗的方法的文章就介绍到这了,更多相关pandas 数据清洗内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

利用pandas进行数据清洗的方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python怎么利用Pandas与NumPy进行数据清洗

本文小编为大家详细介绍“Python怎么利用Pandas与NumPy进行数据清洗”,内容详细,步骤清晰,细节处理妥当,希望这篇“Python怎么利用Pandas与NumPy进行数据清洗”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一
2023-06-30

高效的数据处理利器:pandas的数据清洗方法

数据清洗利器:pandas的高效处理方法引言:随着大数据时代的到来,数据的处理变得愈发重要,尤其是在数据科学和数据分析领域。在这些场景下,数据通常是杂乱无章的,需要进行清洗和整理,才能有效地进行分析和建模。而pandas作为Python中
高效的数据处理利器:pandas的数据清洗方法
2024-01-24

怎么在Python中使用Pandas进行数据清洗

怎么在Python中使用Pandas进行数据清洗?很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。python的五大特点是什么python的五大特点:1.简单易学,
2023-06-14

学会使用pandas进行高效的数据清洗步骤

快速上手!使用Pandas进行数据清洗的方法引言:随着数据的快速增长和不断积累,数据清洗成为了数据分析过程中不可忽视的一部分。而Pandas是Python中一种常用的数据分析工具库。它提供了高效且灵活的数据结构,使得数据清洗变得更加简单和
学会使用pandas进行高效的数据清洗步骤
2024-01-24

探索Pandas中深入去重方法:数据清洗的利器

数据清洗利器Pandas:深入解析去重方法引言:在数据分析与处理中,数据去重是一项非常重要的工作。不仅可以帮助我们处理重复值带来的数据不准确性的问题,还可以提高数据的整体质量。而在Python中,Pandas库提供了强大的去重功能,能够轻
探索Pandas中深入去重方法:数据清洗的利器
2024-01-24

pandas实现数据清洗有哪些方法

pandas实现数据清洗的方法有:1、缺失值处理;2、重复值处理;3、数据类型转换;4、异常值处理;5、数据规范化;6、数据筛选;7、数据聚合和分组;8、数据透视表等。详细介绍:1、缺失值处理,Pandas提供了多种处理缺失值的方法,对于缺
pandas实现数据清洗有哪些方法
2023-11-22

怎么使用Python进行数据清洗

这篇文章主要讲解了“怎么使用Python进行数据清洗”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“怎么使用Python进行数据清洗”吧!缺失值当数据集中包含缺失数据时,在填充之前可以先进行一
2023-07-06

数据清洗的方法是什么

这篇文章主要介绍数据清洗的方法是什么,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!数据清洗方法包括:1、分箱法,将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情
2023-06-15

MySQL中怎么使用LOOP循环进行数据清洗

在MySQL中,可以使用存储过程和游标来实现循环遍历数据并进行数据清洗操作。以下是一个使用存储过程和游标进行数据清洗的示例:创建一个存储过程:DELIMITER //CREATE PROCEDURE clean_data()BEGINDE
MySQL中怎么使用LOOP循环进行数据清洗
2024-04-30

PHP 中使用 Elasticsearch 进行数据清洗与聚合计算

概要:本文将介绍如何在 PHP 中使用 Elasticsearch 进行数据清洗和聚合计算。Elasticsearch 是一个强大而灵活的分布式搜索和分析引擎,它可以帮助我们通过对数据进行索引和查询来进行数据清洗和聚合计算。本文将通过具体的
2023-10-21

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录