我的编程空间,编程开发者的网络收藏夹
学习永远不晚

C++实现LeetCode( 69.求平方根)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

C++实现LeetCode( 69.求平方根)

[LeetCode] 69. Sqrt(x) 求平方根

Implement int sqrt(int x).

Compute and return the square root of x, where x is guaranteed to be a non-negative integer.

Since the return type is an integer, the decimal digits are truncated and only the integer part of the result is returned.

Example 1:

Input: 4
Output: 2

Example 2:

Input: 8
Output: 2
Explanation: The square root of 8 is 2.82842..., and since
the decimal part is truncated, 2 is returned.

这道题要求我们求平方根,我们能想到的方法就是算一个候选值的平方,然后和x比较大小,为了缩短查找时间,我们采用二分搜索法来找平方根,找最后一个不大于目标值的数,这里细心的童鞋可能会有疑问,在总结贴中第三类博主的 right 用的是开区间,那么这里为啥 right 初始化为x,而不是 x+1 呢?因为总结帖里的 left 和 right 都是数组下标,这里的 left 和 right 直接就是数字本身了,一个数字的平方根是不可能比起本身还大的,所以不用加1,还有就是这里若x是整型最大值,再加1就会溢出。最后就是返回值是 right-1,因为题目中说了要把小数部分减去,只有减1才能得到正确的值,代码如下:

解法一:


class Solution {
public:
    int mySqrt(int x) {
        if (x <= 1) return x;
        int left = 0, right = x;
        while (left < right) {
            int mid = left + (right - left) / 2;
            if (x / mid >= mid) left = mid + 1;
            else right = mid;
        }
        return right - 1;
    }
};

这道题还有另一种解法,是利用牛顿迭代法,记得高数中好像讲到过这个方法,是用逼近法求方程根的神器,在这里也可以借用一下,因为要求 x2 = n 的解,令 f(x)=x2-n,相当于求解 f(x)=0 的解,可以求出递推式如下:

xi+1=xi - (xi- n) / (2xi) = xi - xi / 2 + n / (2xi) = xi / 2 + n / 2xi = (xi + n/xi) / 2

解法二:


class Solution {
public:
    int mySqrt(int x) {
        if (x == 0) return 0;
        double res = 1, pre = 0;
        while (abs(res - pre) > 1e-6) {
            pre = res;
            res = (res + x / res) / 2;
        }
        return int(res);
    }
};

也是牛顿迭代法,写法更加简洁一些,注意为了防止越界,声明为长整型,参见代码如下:

解法三:


class Solution {
public:
    int mySqrt(int x) {
        long res = x;
        while (res * res > x) {
            res = (res + x / res) / 2;
        }
        return res;
    }
};

到此这篇关于C++实现LeetCode( 69.求平方根)的文章就介绍到这了,更多相关C++实现求平方根内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

C++实现LeetCode( 69.求平方根)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

C++实现求平方根的方法

这篇文章主要介绍“C++实现求平方根的方法”,在日常操作中,相信很多人在C++实现求平方根的方法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”C++实现求平方根的方法”的疑惑有所帮助!接下来,请跟着小编一起来
2023-06-20

c语言求平方根函数怎么写

在 c 语言中编写平方根函数的步骤:头文件包含:#include 函数声明:double sqrt(double num);函数定义:return sqrt(num);函数调用:double result = sqrt(25.0);如何在
c语言求平方根函数怎么写
2024-05-15

Python基于二分查找实现求整数平方根的方法

本文实例讲述了Python基于二分查找实现求整数平方根的方法。分享给大家供大家参考,具体如下:x=int(raw_input('please input a int:')) if x<0: retrun -1 low=0 high=x an
2022-06-04

Python编程实现二分法和牛顿迭代法求平方根代码

求一个数的平方根函数sqrt(int num) ,在大多数语言中都提供实现。那么要求一个数的平方根,是怎么实现的呢? 实际上求平方根的算法方法主要有两种:二分法(binary search)和牛顿迭代法(Newton iteration)
2022-06-04

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录