我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python实现B树插入算法的原理图解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python实现B树插入算法的原理图解

B树是高度平衡的二叉搜索树,进行插入操作,要先获取插入节点的位置,遵循节点比左子树大,比右子树小,在需要时拆分节点。

一图看懂B树插入操作原理

B树插入算法

BreeInsertion(T, k)r  root[T]if n[r] = 2t - 1
    s = AllocateNode()
    root[T] = s
    leaf[s] = FALSE
    n[s] <- 0
    c1[s] <- r
    BtreeSplitChild(s, 1, r)
    BtreeInsertNonFull(s, k)else BtreeInsertNonFull(r, k)BtreeInsertNonFull(x, k)i = n[x]if leaf[x]
    while i ≥ 1 and k < keyi[x]
        keyi+1 [x] = keyi[x]
        i = i - 1
    keyi+1[x] = k
    n[x] = n[x] + 1else while i ≥ 1 and k < keyi[x]
        i = i - 1
    i = i + 1
    if n[ci[x]] == 2t - 1
        BtreeSplitChild(x, i, ci[x])
        if k &rt; keyi[x]
            i = i + 1
    BtreeInsertNonFull(ci[x], k)BtreeSplitChild(x, i)BtreeSplitChild(x, i, y)z = AllocateNode()leaf[z] = leaf[y]n[z] = t - 1for j = 1 to t - 1
    keyj[z] = keyj+t[y]if not leaf [y]
    for j = 1 to t
        cj[z] = cj + t[y]n[y] = t - 1for j = n[x] + 1 to i + 1
    cj+1[x] = cj[x]ci+1[x] = zfor j = n[x] to i
    keyj+1[x] = keyj[x]keyi[x] = keyt[y]n[x] = n[x] + 1

用Python实现B树插入算法

class BTreeNode:
    def __init__(self, leaf=False):
        self.leaf = leaf
        self.keys = []
        self.child = []

class BTree:
    def __init__(self, t):
        self.root = BTreeNode(True)
        self.t = t

    def insert(self, k):
        root = self.root
        if len(root.keys) == (2 * self.t) - 1:
            temp = BTreeNode()
            self.root = temp
            temp.child.insert(0, root)
            self.split_child(temp, 0)
            self.insert_non_full(temp, k)
        else:
            self.insert_non_full(root, k)

    def insert_non_full(self, x, k):
        i = len(x.keys) - 1
        if x.leaf:
            x.keys.append((None, None))
            while i >= 0 and k[0] < x.keys[i][0]:
                x.keys[i + 1] = x.keys[i]
                i -= 1
            x.keys[i + 1] = k
        else:
            while i >= 0 and k[0] < x.keys[i][0]:
                i -= 1
            i += 1
            if len(x.child[i].keys) == (2 * self.t) - 1:
                self.split_child(x, i)
                if k[0] > x.keys[i][0]:
                    i += 1
            self.insert_non_full(x.child[i], k)

    def split_child(self, x, i):
        t = self.t
        y = x.child[i]
        z = BTreeNode(y.leaf)
        x.child.insert(i + 1, z)
        x.keys.insert(i, y.keys[t - 1])
        z.keys = y.keys[t: (2 * t) - 1]
        y.keys = y.keys[0: t - 1]
        if not y.leaf:
            z.child = y.child[t: 2 * t]
            y.child = y.child[0: t - 1]

    def print_tree(self, x, l=0):
        print("Level ", l, " ", len(x.keys), end=":")
        for i in x.keys:
            print(i, end=" ")
        print()
        l += 1
        if len(x.child) > 0:
            for i in x.child:
                self.print_tree(i, l)

def main():
    B = BTree(3)

    for i in range(10):
        B.insert((i, 2 * i))

    B.print_tree(B.root)

if __name__ == '__main__':
    main()

以上就是Python实现B树插入算法的原理图解的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python实现B树插入算法的原理图解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python实现B树插入算法的原理图解

B树是高度平衡的二叉搜索树,进行插入操作,要先获取插入节点的位置,遵循节点比左子树大,比右子树小,在需要时拆分节点。一图看懂B树插入操作原理B树插入算法BreeInsertion(T, k)r  root[T]if n[r] = 2t
Python实现B树插入算法的原理图解
2024-01-23

深入解析B树算法及其Python实现

B树,和二叉搜索树很像,每个节点可以包含多个节点,但B树的子节点可以超过两个。B树数据结构B树可以在单个节点中存储许多键,并且可以有多个子节点。B树搜索算法BtreeSearch(x,k)i=1while i≤n[x]and k≥ke
深入解析B树算法及其Python实现
2024-01-23

详解B+树的原理及实现Python代码

B+树是自平衡树的高级形式,其中所有值都存在于叶级中。B+树所有叶子都处于同一水平,每个节点的子节点数量≥2。B+树与B树的区别是各节点在B树上不是相互连接,而在B+树上是相互连接的。B+树多级索引结构图B+树搜索规则1、从根节点开始
详解B+树的原理及实现Python代码
2024-01-24

Python实现的插入排序算法原理与用法实例分析

本文实例讲述了Python实现的插入排序算法原理与用法。分享给大家供大家参考,具体如下: 插入排序的基本操作就是将一个数据插入到已经排好序的有序数据中,从而得到一个新的、个数加一的有序数据,算法适用于少量数据的排序,时间复杂度为O(n^2)
2022-06-04

详解B树删除操作:使用Python实现B树删除操作的详细图解

B树删除操作需要考虑节点所在位置和平衡,并且很有可能会发生下溢的情况。当一个节点包含的子节点数量少于它应该持有的最小数量时,就会发生下溢。图文展示B树删除操作原理在不影响平衡情况下。下溢情况。删除内部节点。Python实现B树删除
详解B树删除操作:使用Python实现B树删除操作的详细图解
2024-01-22

Python实现决策树算法的原理与实现方式

决策树算法属于监督学习算法的范畴,适用于连续和分类输出变量,通常会被用于解决分类和回归问题。决策树是一种类似流程图的树结构,其中每个内部节点表示对属性的测试,每个分支表示测试的结果,每个节点都对应一个类标签。决策树算法思路开始,将整个
Python实现决策树算法的原理与实现方式
2024-01-22

深入解析BFS算法原理,带图解说明,并附带Python代码实现BFS算法

BFS又名广度优先搜索,和DFS算法一样都是递归算法,不同的是,BFS算法通过队列,在避免循环的同时遍历目标所有节点。BFS算法的工作原理图解以具有5个节点的无向图为例,如下图:从节点0开始,BFS算法首先将其放入Visited列表并将
深入解析BFS算法原理,带图解说明,并附带Python代码实现BFS算法
2024-01-23

详解Bagging算法的原理及Python实现

目录一、什么是集成学习二、Bagging算法三、Bagging用于分类四、Bagging用于回归一、什么是集成学习 集成学习是一种技术框架,它本身不是一个单独的机器学习算法,而是通过构建并结合多个机器学习器来完成学习任务,一般结构是:先产生
2022-06-02

Python实现希尔排序算法并附带原理图解

Shell排序算法是插入排序算法的强化版本。算法将原始集合分解为更小的子集,然后使用插入排序对每个子集进行排序。Shell排序算法中可以使用的最佳序列原始序列:N/2,N/4,…,1诺斯增量序列:1,4,13,…,(3k–1)/2S
Python实现希尔排序算法并附带原理图解
2024-01-23

Python怎么实现RGB等图片的图像插值算法

这篇文章主要介绍“Python怎么实现RGB等图片的图像插值算法”,在日常操作中,相信很多人在Python怎么实现RGB等图片的图像插值算法问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python怎么实现R
2023-06-21

图文讲解选择排序算法的原理及在Python中的实现

基本思想:从未排序的序列中找到一个最小的元素,放到第一位,再从剩余未排序的序列中找到最小的元素,放到第二位,依此类推,直到所有元素都已排序完毕。假设序列元素总共n+1个,则我们需要找n轮,就可以使该序列排好序。在每轮中,我们可以这样做:用未
2022-06-04

基于红黑树插入操作原理及java实现的示例分析

这篇文章主要介绍基于红黑树插入操作原理及java实现的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!红黑树是一种二叉平衡查找树,每个结点上有一个存储位来表示结点的颜色,可以是RED或BLACK。红黑树具有以下
2023-05-30

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录