我的编程空间,编程开发者的网络收藏夹
学习永远不晚

教你漂亮打印Pandas DataFrames和Series

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

教你漂亮打印Pandas DataFrames和Series

一、前言

当我们必须处理可能有多个列和行的大型DataFrames时,能够以可读格式显示数据是很重要的。这在调试代码时非常有用。

默认情况下,当打印出DataFrame且具有相当多的列时,仅列的子集显示到标准输出。 显示的列甚至可以多行打印出来。

二、问题

假设我们有以下DataFrame:


import pandas as pd 
import numpy as np


df = pd.DataFrame(
  np.random.randint(0, 100, size=(100, 25)), 
  columns=[f'column{i}' for i in range(0, 25)]
)

print(df)

现在,如果列数超过显示选项display.max_rows的值,则输出DataFrame可能不完整,如下所示。 仅显示一部分列(缺少第4列和第5列),而其余列以多行方式打印。

尽管输出仍可读取,但绝对不建议保留列或将其打印在多行中。

三、如何漂亮打印Pandas的DataFrames

如果您的显示器足够宽并且能够容纳更多列,则可能需要调整一些显示选项。 我将在下面使用的值可能不适用于您的设置,因此请确保对其进行相应的调整。 就个人而言,我使用超宽显示器,可以在必要时打印出相当多的列。

如何在同一行打印所有列

现在,为了显示所有的列(如果你的显示器能够适合他们),并在短短一行所有你需要做的是设置显示选项expand_frame_repr为False:


pd.set_option('expand_frame_repr', False)

display.expand_frame_repr 默认值:True

是否跨多行打印宽数据的完整DataFrame ,可以考虑使用max_columns,但是如果宽度超过display.width,则输出将在多个“页面”中回绕。

另外,您可以更改display.max_rows的值,而不是将expand_frame_repr设置为False:


pd.set_option(‘display.max_rows', False)

如果列仍打印在多页中,那么您可能还必须调整display.width。

四、如何打印所有行

现在,如果您的DataFrame包含的行数超过一定数目,那么将仅显示一些记录(来自df的头部和尾部):


import pandas as pd 
import numpy as np


df = pd.DataFrame(
  np.random.randint(0, 5, size=(100, 4)), 
  columns=[f'column{i}' for i in range(0, 4)]
)

print(df)

# column0  column1  column2  column3
# 0         4        0        0        0
# 1         2        2        4        2
# 2         2        4        0        2
# 3         0        0        0        4
# 4         3        4        3        3
# ..      ...      ...      ...      ...
# 95        3        1        1        2
# 96        1        4        0        0
# 97        0        3        2        1
# 98        3        3        4        2
# 99        0        3        0        3
# [100 rows x 4 columns]

如果要显示更大范围(甚至全部)的行,则需要将display.max_rows设置为要输出的行数。 如果要显示所有行,请将其设置为“None”:


pd.set_option('display.max_rows', None)

五、使用上下文管理器

更好的方法是使用option_context(),它是一个上下文管理器,可用于在with语句上下文中临时设置特定选项。


import pandas as pd 
import numpy as np

df = pd.DataFrame(
  np.random.randint(0, 100, size=(100, 25)), 
  columns=[f'column{i}' for i in range(0, 25)]
)

with pd.option_context('expand_frame_repr', False, 'display.max_rows', None): 
  print(df)

六、其他有用的显示选项

您可以调整更多显示选项,并更改Pandas DataFrames的显示方式。

display.max_colwidth:这是显示列名的最大字符数。 如果某个列名溢出,则将添加一个占位符(…)。


pd.set_option('display.max_colwidth', None)

display.precision:这是将用于浮点数的精度。 它指定小数点后的位数。

display.width:这是显示字符的总数。 如果要显示更多列,则可能有时还必须调整display.width。

您可以使用describe_option()找到完整的显示列表:


pd.describe_option(‘display') .

给Jupyter用户的注意事项

如果您正在使用Jupyter Notebooks,而不是print(df),只需使用display(df)即可相应地调整宽度。

七、总结

在今天的文章中,我们讨论了Pandas的一些显示选项,使您可以根据要显示的内容以及可能使用的显示器,漂亮地打印DataFrame。

熊猫带有一个设置系统,使用户可以调整和自定义显示功能。 我们仅涵盖了可用显示选项的一小部分。

到此这篇关于教你漂亮打印Pandas DataFrames和Series的文章就介绍到这了,更多相关打印Pandas DataFrames和Series内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

教你漂亮打印Pandas DataFrames和Series

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何打印Pandas DataFrames和Series

这篇文章将为大家详细讲解有关如何打印Pandas DataFrames和Series,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一、前言当我们必须处理可能有多个列和行的大型DataFrames时,能够以
2023-06-15

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录