我的编程空间,编程开发者的网络收藏夹
学习永远不晚

PID原理与python的简单实现和调参

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

PID原理与python的简单实现和调参

一、前言

近期在实际项目中使用到了PID控制算法,于是就该算法做一总结。

二、PID控制算法详解

2.1 比例控制算法

例子: 假设一个水缸,需要最终控制水缸的水位永远维持在1米的高度。

水位目标:T 当前水位:Tn 加水量:U 误差:error error=T-Tn 比例控制系数:kp U = k_p * errorU=kp​∗error initial: T=1; Tn=0.2, error=1-0.2=0.8; kp=0.4

2.1.1 比例控制python简单示意

T=1
Tn=0.2
error=1-0.2
kp=0.4

for t in range(1, 10):
    U = kp * error
    Tn += U
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')
   
"""
t=1 | add 0.32000 => Tn=0.52000 error=0.48000
t=2 | add 0.19200 => Tn=0.71200 error=0.28800
t=3 | add 0.11520 => Tn=0.82720 error=0.17280
t=4 | add 0.06912 => Tn=0.89632 error=0.10368
t=5 | add 0.04147 => Tn=0.93779 error=0.06221
t=6 | add 0.02488 => Tn=0.96268 error=0.03732
t=7 | add 0.01493 => Tn=0.97761 error=0.02239
t=8 | add 0.00896 => Tn=0.98656 error=0.01344
t=9 | add 0.00537 => Tn=0.99194 error=0.00806
"""

2.1.2 比例控制存在的一些问题

根据kp取值不同,系统最后都会达到1米,只不过kp大了达到的更快。不会有稳态误差。 若存在漏水情况,在相同情况下,经过多次加水后,水位会保持在0.75不在再变化,因为当U和漏水量一致的时候将保持不变——即稳态误差 U=k_p*error=0.1 => error = 0.1/0.4 = 0.25U=kp​∗error=0.1=>error=0.1/0.4=0.25,所以误差永远保持在0.25

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

for t in range(1, 100):
    U = kp * error
    Tn += U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')

"""
t=95 | add 0.10000 => Tn=0.75000 error=0.25000
t=96 | add 0.10000 => Tn=0.75000 error=0.25000
t=97 | add 0.10000 => Tn=0.75000 error=0.25000
t=98 | add 0.10000 => Tn=0.75000 error=0.25000
t=99 | add 0.10000 => Tn=0.75000 error=0.25000
"""

实际情况中,这种类似水缸漏水的情况往往更加常见

  • 比如控制汽车运动,摩擦阻力就相当于是"漏水"
  • 控制机械臂、无人机的飞行,各类阻力和消耗相当于"漏水"

所以单独的比例控制,很多时候并不能满足要求

2.2 积分控制算法(消除稳态误差)

比例+积分控制算法 

  • 误差累计
  • 积分控制系数

2.2.1 python简单实现

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1
ki=0.2
sum_error = 0

for t in range(1, 20):
    sum_error += error
    U = kp * error + ki * sum_error
    Tn += U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f}')


"""
t=14 | add 0.10930 => Tn=0.97665 error=0.02335
t=15 | add 0.11025 => Tn=0.98690 error=0.01310
t=16 | add 0.10877 => Tn=0.99567 error=0.00433
t=17 | add 0.10613 => Tn=1.00180 error=-0.00180
t=18 | add 0.10332 => Tn=1.00512 error=-0.00512
t=19 | add 0.10097 => Tn=1.00608 error=-0.00608
"""

2.3 微分控制算法(减少控制中的震荡)

在越靠近目标的时候则加的越少。 

  • kd: 微分控制系数
  • d_error/d_t ~= error_t - error_t_1:误差的变化

3.3.1 加入微分控制算法的python简单示意

令:kd=0.2; d_error = 当前时刻误差-前时刻误差

T=1
Tn=0.2
error=1-0.2
kp=0.4
extra_drop = 0.1

ki=0.2
sum_error = 0

kd=0.2
d_error = 0
error_n = 0
error_b = 0

for t in range(1, 20):
    error_b = error_n
    error_n = error
    # print(error_b1, error_b2)
    d_error = error_n - error_b if t >= 2 else 0
    sum_error += error
    U = kp * error + ki * sum_error + kd * d_error
    Tn += U - extra_drop
    error = T-Tn
    print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

"""
t=14 | add 0.09690 => Tn=0.96053 error=0.03947 | d_error: 0.01319
t=15 | add 0.10402 => Tn=0.96455 error=0.03545 | d_error: 0.00310
t=16 | add 0.10808 => Tn=0.97263 error=0.02737 | d_error: -0.00402
t=17 | add 0.10951 => Tn=0.98214 error=0.01786 | d_error: -0.00808
t=18 | add 0.10899 => Tn=0.99113 error=0.00887 | d_error: -0.00951
t=19 | add 0.10727 => Tn=0.99840 error=0.00160 | d_error: -0.00899
"""

2.4 PID算法总结

for kp_i in np.linspace(0, 1, 10): pid_plot(kp=kp_i, ki=0.2, kd=0.2)

for ki_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=ki_i, kd=0.2)

for kd_i in np.linspace(0, 1, 10): pid_plot(kp=0.5, ki=0.2, kd=kd_i)

pid_plot(kp=0.65, ki=0.05, kd=0.5, print_flag=True)

三、牛顿法调参

损失函数采用:RMSE

from scipy import optimize 
import matplotlib.pyplot as plt
import numpy as np

def pid_plot(args, plot_flag=True, print_flag=False):
    kp, ki, kd = args
    T=1
    Tn=0.2
    error=1-0.2
    extra_drop = 0.1
    sum_error = 0
    d_error = 0
    error_n = 0
    error_b = 0
    Tn_list = []
    for t in range(1, 100):
        error_b = error_n
        error_n = error
        d_error = error_n - error_b if t >= 2 else 0
        sum_error += error
        U = kp * error + ki * sum_error + kd * d_error
        Tn += U - extra_drop
        error = T-Tn
        Tn_list.append(Tn)
        if print_flag:
            print(f't={t} | add {U:.5f} => Tn={Tn:.5f} error={error:.5f} | d_error: {d_error:.5f}')

    if plot_flag:
        plt.plot(Tn_list)
        plt.axhline(1, linestyle='--', color='darkred', alpha=0.8)
        plt.title(f'$K_p$={kp:.3f} $K_i$={ki:.3f} $K_d$={kd:.3f}')
        plt.ylim([0, max(Tn_list) + 0.2])
        plt.show()

    loss = np.sqrt(np.mean(np.square(np.ones_like(Tn_list) - np.array(Tn_list))))
    return loss



boundaries=[(0, 2), (0, 2), (0, 2)]
res = optimize.fmin_l_bfgs_b(pid_plot, np.array([0.1, 0.1, 0.1]), args=(False, False), bounds = boundaries, approx_grad = True)

pid_plot(res[0].tolist(), print_flag=True)
pid_plot([0.65, 0.05, 0.5], print_flag=True)

牛顿法调参结果图示 :

简单手动调参图示:

到此这篇关于PID原理与python的简单实现和调参的文章就介绍到这了,更多相关PID与python内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

PID原理与python的简单实现和调参

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python模块怎么实现简单的调用

这篇文章给大家分享的是有关Python模块怎么实现简单的调用的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。python可以做什么Python是一种编程语言,内置了许多有效的工具,Python几乎无所不能,该语言通
2023-06-14

MyBatis接口的简单实现原理分析

用过MyBatis3的人可能会觉得为什么MyBatis的Mapper接口没有实现类,但是可以直接用?那是因为MyBatis使用Java动态代理实现的接口。这里仅仅举个简单例子来说明原理,不是完全针对MyBatis的,这种思想我们也可以应用在
2023-05-31

利用python实现简单的http和ht

http服务器代码:#!/usr/bin/python3#python version 3.7import sys from http import serverfrom http.server import SimpleHTTPRequ
2023-01-31

C++实现简单的ls命令及其原理

这篇文章主要介绍了C++实现简单的ls命令及其原理,C++实现ls命令可通过调用系统函数实现读取目录中的文件名和属性,再通过标准输出进行显示,需要的朋友可以参考下
2023-05-19

iOS简单易用的GCD计时器的实现原理

前言 好久没更新文章了,在掘金第一次发文章,还是给自己立一个flag每周至少更新一篇文章,可能文章的质量还不是很如意,希望通过写文章来提高自己文笔,以及记录自己学习中的遇到的问题解决方案。 在学习iOS过程中,想定大家对于定时器都不陌生,在
2022-05-17

python实现简单的名片管理系统

本文实例为大家分享了python实现名片管理系统的具体代码,供大家参考,具体内容如下 名片管理系统 前提:实现名片管理系统,首先要创建两个python file ,分别是cards_main.py和cards_tool.py,前一个是主代码
2022-06-02

vue.js父子组件传参的原理与实现方法 原创

这篇文章主要介绍了vue.js父子组件传参的原理与实现方法,结合实例形式分析了vue.js父子组件传参的基本原理、实现方法与相关操作注意事项,需要的朋友可以参考下
2023-05-17

浅谈线性表的原理及简单实现方法

一、线性表原理:零个或多个同类数据元素的有限序列原理图:特点 :1、有序性2、有限性3、同类型元素4、第一个元素无前驱,最后一个元素无后继,中间的元素有一个前驱并且有一个后继线性表是一种逻辑上的数据结构,在物理上一般有两种实现 顺序实现和链
2023-05-31

Python栈算法的实现与简单应用示例

本文实例讲述了Python栈算法的实现与简单应用。分享给大家供大家参考,具体如下: 原理: 栈作为一种数据结构,是一种只能在一端进行插入和删除操作。它按照先进后出的原则存储数据,先进入的数据被压入栈底,最后的数据在栈顶,需要读数据的时候从栈
2022-06-04

一致性哈希概念与Python的简单实现

好像从开始接触Zookeeper的时候就知道了有一致性哈希这东西。。。。不过倒是一直都没有去了解这到底是个啥东西。。。只是知道它在分布式系统设计中有十分重要的作用。。。。好了,接下来用举例子的方式来说一下一致性哈希到底有啥用吧。。。场景如下
2023-01-31

C++中内存池的简单原理及实现详解

内存池的思想是,在真正使用内存之前,预先申请分配一定数量、大小预设的内存块留作备用。本文主要来和大家聊聊内存池的简单原理及实现,希望对大家有所帮助
2023-03-01

Android回调与观察者模式的实现原理

回调与观察者模式的实现原理:废话不多说,直接上Demo回调的原理:观察者模式:A类中定义一个被观察者画家package com.example.view; import android.content.Context; import and
2022-06-06

vue.js模版插值的原理与实现方法简析 原创

这篇文章主要介绍了vue.js模版插值的原理与实现方法,结合实例形式简单分析了vue.js模板插值的基本功能、原理、实现方法与注意事项,需要的朋友可以参考下
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录