Spring Boot使用线程池处理上万条数据插入功能
# 前言
前两天做项目的时候,想提高一下插入表的性能优化,因为是两张表,先插旧的表,紧接着插新的表,一万多条数据就有点慢了
后面就想到了线程池ThreadPoolExecutor,而用的是Spring Boot项目,可以用Spring提供的对ThreadPoolExecutor封装的线程池ThreadPoolTaskExecutor,直接使用注解启用
# 使用步骤
先创建一个线程池的配置,让Spring Boot加载,用来定义如何创建一个ThreadPoolTaskExecutor,要使用@Configuration和@EnableAsync这两个注解,表示这是个配置类,并且是线程池的配置类
@Configuration
@EnableAsync
public class ExecutorConfig {
private static final Logger logger = LoggerFactory.getLogger(ExecutorConfig.class);
@Value("${async.executor.thread.core_pool_size}")
private int corePoolSize;
@Value("${async.executor.thread.max_pool_size}")
private int maxPoolSize;
@Value("${async.executor.thread.queue_capacity}")
private int queueCapacity;
@Value("${async.executor.thread.name.prefix}")
private String namePrefix;
@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
logger.info("start asyncServiceExecutor");
ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor();
//配置核心线程数
executor.setCorePoolSize(corePoolSize);
//配置最大线程数
executor.setMaxPoolSize(maxPoolSize);
//配置队列大小
executor.setQueueCapacity(queueCapacity);
//配置线程池中的线程的名称前缀
executor.setThreadNamePrefix(namePrefix);
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//执行初始化
executor.initialize();
return executor;
}
}
@Value是我配置在application.properties,可以参考配置,自由定义
# 异步线程配置
# 配置核心线程数
async.executor.thread.core_pool_size = 5
# 配置最大线程数
async.executor.thread.max_pool_size = 5
# 配置队列大小
async.executor.thread.queue_capacity = 99999
# 配置线程池中的线程的名称前缀
async.executor.thread.name.prefix = async-service-
创建一个Service接口,是异步线程的接口
public interface AsyncService {
void executeAsync();
}
实现类
@Service
public class AsyncServiceImpl implements AsyncService {
private static final Logger logger = LoggerFactory.getLogger(AsyncServiceImpl.class);
@Override
@Async("asyncServiceExecutor")
public void executeAsync() {
logger.info("start executeAsync");
System.out.println("异步线程要做的事情");
System.out.println("可以在这里执行批量插入等耗时的事情");
logger.info("end executeAsync");
}
}
在executeAsync()方法上增加注解@Async("asyncServiceExecutor"),asyncServiceExecutor方法是前面ExecutorConfig.java中的方法名,表明executeAsync方法进入的线程池是asyncServiceExecutor方法创建的
接下来就是在Controller里或者是哪里通过注解@Autowired注入这个Service
@Autowiredprivate
AsyncService asyncService;
@GetMapping("/async")
public void async(){
asyncService.executeAsync();
}
日志打印
2022-07-16 22:15:47.655 INFO 10516 --- [async-service-5] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:15:47.655 INFO 10516 --- [async-service-5] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:15:47.770 INFO 10516 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:15:47.770 INFO 10516 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:15:47.816 INFO 10516 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:15:47.816 INFO 10516 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:15:48.833 INFO 10516 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:15:48.834 INFO 10516 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:15:48.986 INFO 10516 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:15:48.987 INFO 10516 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
通过以上日志可以发现,[async-service-]是有多个线程的,显然已经在我们配置的线程池中执行了,并且每次请求中,controller的起始和结束日志都是连续打印的,表明每次请求都快速响应了,而耗时的操作都留给线程池中的线程去异步执行;
虽然我们已经用上了线程池,但是还不清楚线程池当时的情况,有多少线程在执行,多少在队列中等待呢?这里我创建了一个ThreadPoolTaskExecutor的子类,在每次提交线程的时候都会将当前线程池的运行状况打印出来
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.scheduling.concurrent.ThreadPoolTaskExecutor;
import org.springframework.util.concurrent.ListenableFuture;
import java.util.concurrent.Callable;import java.util.concurrent.Future;import java.util.concurrent.ThreadPoolExecutor;
public class VisiableThreadPoolTaskExecutor extends ThreadPoolTaskExecutor {
private static final Logger logger = LoggerFactory.getLogger(VisiableThreadPoolTaskExecutor.class);
private void showThreadPoolInfo(String prefix) {
ThreadPoolExecutor threadPoolExecutor = getThreadPoolExecutor();
if (null == threadPoolExecutor) {
return;
}
logger.info("{}, {},taskCount [{}], completedTaskCount [{}], activeCount [{}], queueSize [{}]",
this.getThreadNamePrefix(),
prefix,
threadPoolExecutor.getTaskCount(),
threadPoolExecutor.getCompletedTaskCount(),
threadPoolExecutor.getActiveCount(),
threadPoolExecutor.getQueue().size());
}
@Override
public void execute(Runnable task) {
showThreadPoolInfo("1. do execute");
super.execute(task);
}
@Override
public void execute(Runnable task, long startTimeout) {
showThreadPoolInfo("2. do execute");
super.execute(task, startTimeout);
}
@Override
public Future<?> submit(Runnable task) {
showThreadPoolInfo("1. do submit");
return super.submit(task);
}
@Override
public <T> Future<T> submit(Callable<T> task) {
showThreadPoolInfo("2. do submit");
return super.submit(task);
}
@Override
public ListenableFuture<?> submitListenable(Runnable task) {
showThreadPoolInfo("1. do submitListenable");
return super.submitListenable(task);
}
@Override
public <T> ListenableFuture<T> submitListenable(Callable<T> task) {
showThreadPoolInfo("2. do submitListenable");
return super.submitListenable(task);
}
}
如上所示,showThreadPoolInfo方法中将任务总数、已完成数、活跃线程数,队列大小都打印出来了,然后Override了父类的execute、submit等方法,在里面调用showThreadPoolInfo方法,这样每次有任务被提交到线程池的时候,都会将当前线程池的基本情况打印到日志中;
修改ExecutorConfig.java的asyncServiceExecutor方法,将ThreadPoolTaskExecutor executor = new ThreadPoolTaskExecutor()改为ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor()
@Bean(name = "asyncServiceExecutor")
public Executor asyncServiceExecutor() {
logger.info("start asyncServiceExecutor");
//在这里修改
ThreadPoolTaskExecutor executor = new VisiableThreadPoolTaskExecutor();
//配置核心线程数
executor.setCorePoolSize(corePoolSize);
//配置最大线程数
executor.setMaxPoolSize(maxPoolSize);
//配置队列大小
executor.setQueueCapacity(queueCapacity);
//配置线程池中的线程的名称前缀
executor.setThreadNamePrefix(namePrefix);
// rejection-policy:当pool已经达到max size的时候,如何处理新任务
// CALLER_RUNS:不在新线程中执行任务,而是有调用者所在的线程来执行
executor.setRejectedExecutionHandler(new ThreadPoolExecutor.CallerRunsPolicy());
//执行初始化
executor.initialize();
return executor;
}
再次启动该工程测试
2022-07-16 22:23:30.951 INFO 14088 --- [nio-8087-exec-2] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [0], completedTaskCount [0], activeCount [0], queueSize [0]
2022-07-16 22:23:30.952 INFO 14088 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:23:30.953 INFO 14088 --- [async-service-1] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:23:31.351 INFO 14088 --- [nio-8087-exec-3] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [1], completedTaskCount [1], activeCount [0], queueSize [0]
2022-07-16 22:23:31.353 INFO 14088 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:23:31.353 INFO 14088 --- [async-service-2] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:23:31.927 INFO 14088 --- [nio-8087-exec-5] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [2], completedTaskCount [2], activeCount [0], queueSize [0]
2022-07-16 22:23:31.929 INFO 14088 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:23:31.930 INFO 14088 --- [async-service-3] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
2022-07-16 22:23:32.496 INFO 14088 --- [nio-8087-exec-7] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [3], completedTaskCount [3], activeCount [0], queueSize [0]
2022-07-16 22:23:32.498 INFO 14088 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : start executeAsync
异步线程要做的事情
可以在这里执行批量插入等耗时的事情
2022-07-16 22:23:32.499 INFO 14088 --- [async-service-4] c.u.d.e.executor.impl.AsyncServiceImpl : end executeAsync
注意这一行日志:
2022-07-16 22:23:32.496 INFO 14088 --- [nio-8087-exec-7] u.d.e.e.i.VisiableThreadPoolTaskExecutor : async-service-, 2. do submit,taskCount [3], completedTaskCount [3], activeCount [0], queueSize [0]
这说明提交任务到线程池的时候,调用的是submit(Callable task)这个方法,当前已经提交了3个任务,完成了3个,当前有0个线程在处理任务,还剩0个任务在队列中等待,线程池的基本情况一路了然;
到此这篇关于Spring Boot使用线程池处理上万条数据插入的文章就介绍到这了,更多相关Spring Boot线程池处理上万条数据插入内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341