我的编程空间,编程开发者的网络收藏夹
学习永远不晚

【2023五一杯数学建模】B题 快递需求分析 31页论文

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

【2023五一杯数学建模】B题 快递需求分析 31页论文

【2023五一杯数学建模】B题 快递需求分析 31页论文及代码

请添加图片描述

1 题目

请依据以下提供的附件数据和背景内容,建立数学模型,完成接下来的问题:问题背景是,网络购物作为一种重要的消费方式,带动着快递服务需求飞速增长,为我国经济发展做出了重要贡献。准确地预测快递运输需求数量对于快递公司布局仓库站点、节约存储成本、规划运输线路等具有重要的意义。附件1、附件2、附件3为国内某快递公司记录的部分城市之间的快递运输数据,包括发货日期、发货城市以及收货城市(城市名已用字母代替,剔除了6月、11月、12月的数据),附件1、附件2、附件3部分内容如下所示,

附件1.xlsx,

日期(年/月/日) (Date Y/M/D)发货城市 (Delivering city)收货城市 (Receiving city)快递运输数量(件) (Express delivery quantity (PCS))
2018/4/19AO45
2018/4/19SR51

附件2.xlsx,

日期(年/月/日) (Date Y/M/D)发货城市 (Delivering city)收货城市 (Receiving city)快递运输数量(件) (Express delivery quantity (PCS))
2020/4/28RO216
2020/4/28RL320
2020/4/28RG110

附件3.xlsx,

起点 (Start)终点 (End)固定成本 (Fixed cost)额定装货量(件) (Rated load (PCS))
AT3.6200
AC2.4200
TA3.6200
TL3200

问题1:附件1为该快递公司记录的2018年4月19日—2019年4月17日的站点城市之间(发货城市-收货城市)的快递运输数据,请从收货量、发货量、快递数量增长/减少趋势、相关性等多角度考虑,建立数学模型,对各站点城市的重要程度进行综合排序,并给出重要程度排名前5的站点城市名称,将结果填入表1,

表1 问题1结果

排序12345
城市名称

问题2:请利用附件1数据,建立数学模型,预测2019年4月18日和2019年4月19日各“发货-收货”站点城市之间快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量,并在表2中填入指定的站点城市之间的快递运输数量,以及当日所有“发货-收货”站点城市之间的总快递运输数量。

表2 问题2结果

日期“发货-收货”城市之间的快递运输数量所有“发货-收货”城市之间的总快递运输数量
2019年4月18日M-U
Q-V
K-L
G-V
2019年4月19日V-G
A-Q
D-A
L-K

问题3:附件2为该快递公司记录的2020年4月28日—2023年4月27日的快递运输数量。由于受到突发事件影响,部分城市之间快递线路无法正常运输,导致站点城市之间无法正常发货或收货(无数据表示无法正常收发货,0表示无发货需求)。请利用附件2数据,建立数学模型,预测2023年4月28日和2023年4月29日可正常“发货-收货”的站点城市对(发货城市-收货城市),并判断表3中指定的站点城市对是否能正常发货,如果能正常发货,给出对应的快递运输数量,并将结果填入表3。

表3 问题3结果

日期“发货-收货”站点城市对是否能正常发货(填写“是”或“否”)快递运输数量
2023年4月28日I-S
M-G
S-Q
V-A
Y-L
2023年4月29日D-R
J-K
Q-O
U-O
Y-W

问题4,图1给出了A-Y总共25个站点城市间的铁路运输网络,铁路运输成本由以下公式计算: 成本 = 固定成本 × ( 1 + ( 实际装货量额定装货量 )3 ) 成本=固定成本×(1+(\frac{实际装货量}{额定装货量})^3) 成本=固定成本×(1+(额定装货量实际装货量)3)。在本题中,假设实际装货量允许超过额定装货量。所有铁路的固定成本、额定装货量在附件3中给出。在运输快递时,要求每个“发货-收货”站点城市对之间使用的路径数不超过5条,请建立数学模型,给出该快递公司成本最低的运输方案。利用附件2和附件3的数据,计算该公司2023年4月23—27日每日的最低运输成本,填入表4。为了方便计算,不对快递重量和大小进行区分,假设每件快递的重量为单位1。仅考虑运输成本,不考虑中转等其它成本。

表4 问题4结果

日期最低运输成本
2023年4月23日
2023年4月24日
2023年4月25日
2023年4月26日
2023年4月27日

问题5:通常情况下,快递需求由两部分组成,一部分为固定需求,这部分需求来源于日常必要的网购消费(一般不能简单的认定为快递需求历史数据的最小值,通常小于需求的最小值);另一部分为非固定需求,这部分需求通常有较大波动,受时间等因素的影响较大。假设在同一季度中,同一“发货-收货”站点城市对的固定需求为一确定常数(以下简称为固定需求常数);同一“发货-收货”站点城市对的非固定需求服从某概率分布(该分布的均值和标准差分别称为非固定需求均值、非固定需求标准差)。请利用附件2中的数据,不考虑已剔除数据、无发货需求数据、无法正常发货数据,解决以下问题。

(1) 建立数学模型,按季度估计固定需求常数,并验证其准确性。将指定季度、指定“发货-收货”站点城市对的固定需求常数,以及当季度所有“发货-收货”城市对的固定需求常数总和,填入表5。

(2) 给出非固定需求概率分布估计方法,并将指定季度、指定“发货-收货”站点城市对的非固定需求均值、标准差,以及当季度所有“发货-收货”城市对的非固定需求均值总和、非固定需求标准差总和,填入表5。

附件2.xlsx,

日期(年/月/日) (Date Y/M/D)发货城市 (Delivering city)收货城市 (Receiving city)快递运输数量(件) (Express delivery quantity (PCS))
2020/4/28RO216
2020/4/28RL320
2020/4/28RG110

表5 问题5结果

季度2022年第三季度(7—9月)2023年第一季度(1—3月)
“发货-收货”站点城市对V-NV-QJ-IO-G
固定需求常数
非固定需求均值
非固定需求标准差
固定需求常数总和
非固定需求均值总和
非固定需求标准差总和

2 论文介绍

如今网络购物对我国经济影响越来越大,精准预测快递运输需求数量对于快递公司布局仓库站点、节约存储成本、规划运输线路等具有重要的意义。本文通过分析历史快递运输数据,建立数学模型,对快递运输需求相关问题进行求解
针对问题一,根据附件1计算出每个城市的收货总量、发货总量、快递量占比,快递量增长率作为指标,利用熵权法确定指标权重,构建多因素综合评价模型。求解各站点城市得分并排序,给出排名前5的城市为分别L,G,K,F,V。
针对问题二,首先对附件2中缺省数据进行插值填补,构建基于时间序列预测的ARIMA模型并进行白噪声检验,利用模型对各站点城市2019年4月18日和2019年4月19日快递传输数量以及快递数总量进行预测。
针对问题三,引入0-1变量Ytij表示城市i和城市j在t时刻的快递运输状况。将Ytij作为因变量,每个站点城市对的平均快递运输量、方差、最大值、最小值作为因变量构建二分类逻辑回归模型,预测并统计结果中可正常“发货-收货”的站点城市,使用第二问构建的时间序列分析模型预测快递运输数量。
针对问题四,首先将问题图论化,通过引入决策变量,建立了以当日运输成本最低为目标的线性规划模型,利用Lingo软件求解。计算得到2023年4月23—27日最低运输成本为1267.58,1549.55,1421.16,1244.73,1288.11。
针对问题五,本文首先使用ksdensity(核密度估计)统计站点城市在指定季度内快递数量分布情况,并在一定时期内使用 “发货-收货”站点城市概率密度函数的均值作为固定需求常数,根据历史数据对其进行验证。在固定需求常数确定的情况下,使用最小二乘法估计非固定需求的均值和标准差。

**关键词:**多因素综合评价 ARIMA模型 逻辑回归 线性规划 核密度估计

在这里插入图片描述

3 下载内容

见知乎文章最底部,或者私信我

https://zhuanlan.zhihu.com/p/631493694

来源地址:https://blog.csdn.net/weixin_43935696/article/details/130823571

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

【2023五一杯数学建模】B题 快递需求分析 31页论文

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录