我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python中进行特征重要性分析的9个常用方法

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python中进行特征重要性分析的9个常用方法

特征重要性分析用于了解每个特征(变量或输入)对于做出预测的有用性或价值。目标是确定对模型输出影响最大的最重要的特征,它是机器学习中经常使用的一种方法。

为什么特征重要性分析很重要?

如果有一个包含数十个甚至数百个特征的数据集,每个特征都可能对你的机器学习模型的性能有所贡献。但是并不是所有的特征都是一样的。有些可能是冗余的或不相关的,这会增加建模的复杂性并可能导致过拟合。

特征重要性分析可以识别并关注最具信息量的特征,从而带来以下几个优势:

  • 改进的模型性能
  • 减少过度拟合
  • 更快的训练和推理
  • 增强的可解释性

下面我们深入了解在Python中的一些特性重要性分析的方法。

特征重要性分析方法

排列重要性 PermutationImportance

该方法会随机排列每个特征的值,然后监控模型性能下降的程度。如果获得了更大的下降意味着特征更重要

 from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier from sklearn.inspection import permutation_importance  from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt  cancer = load_breast_cancer()  X_train, X_test, y_train, y_test = train_test_split(cancer.data, cancer.target, random_state=1)  rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(X_train, y_train)   baseline = rf.score(X_test, y_test) result = permutation_importance(rf, X_test, y_test, n_repeats=10, random_state=1, scoring='accuracy')  importances = result.importances_mean  # Visualize permutation importances plt.bar(range(len(importances)), importances) plt.xlabel('Feature Index') plt.ylabel('Permutation Importance') plt.show()

内置特征重要性(coef_或feature_importances_)

一些模型,如线性回归和随机森林,可以直接输出特征重要性分数。这些显示了每个特征对最终预测的贡献。

 from sklearn.datasets import load_breast_cancer from sklearn.ensemble import RandomForestClassifier  X, y = load_breast_cancer(return_X_y=True)  rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(X, y)  importances = rf.feature_importances_  # Plot importances plt.bar(range(X.shape[1]), importances) plt.xlabel('Feature Index')  plt.ylabel('Feature Importance') plt.show()

Leave-one-out

迭代地每次删除一个特征并评估准确性。

 from sklearn.datasets import load_breast_cancer from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score import matplotlib.pyplot as plt import numpy as np  # Load sample data X, y = load_breast_cancer(return_X_y=True)  # Split data into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1)   # Train a random forest model rf = RandomForestClassifier(n_estimators=100, random_state=1) rf.fit(X_train, y_train)  # Get baseline accuracy on test data base_acc = accuracy_score(y_test, rf.predict(X_test))  # Initialize empty list to store importances importances = []  # Iterate over all columns and remove one at a time for i in range(X_train.shape[1]):     X_temp = np.delete(X_train, i, axis=1)     rf.fit(X_temp, y_train)     acc = accuracy_score(y_test, rf.predict(np.delete(X_test, i, axis=1)))     importances.append(base_acc - acc)      # Plot importance scores     plt.bar(range(len(importances)), importances) plt.show()

相关性分析

计算各特征与目标变量之间的相关性。相关性越高的特征越重要。

 import pandas as pd from sklearn.datasets import load_breast_cancer  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  correlations = df.corrwith(df.y).abs() correlations.sort_values(ascending=False, inplace=True)  correlations.plot.bar()

递归特征消除 Recursive Feature Elimination

递归地删除特征并查看它如何影响模型性能。删除时会导致更大下降的特征更重要。

 from sklearn.ensemble import RandomForestClassifier from sklearn.feature_selection import RFE import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as plt  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  rf = RandomForestClassifier()  rfe = RFE(rf, n_features_to_select=10)  rfe.fit(X, y)  print(rfe.ranking_)

输出为[6 4 11 12 7 11 18 21 8 16 10 3 15 14 19 17 20 13 11 11 12 9 11 5 11]

XGBoost特性重要性

计算一个特性用于跨所有树拆分数据的次数。更多的分裂意味着更重要。

 import xgboost as xgb import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as plt  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  model = xgb.XGBClassifier() model.fit(X, y)  importances = model.feature_importances_ importances = pd.Series(importances, index=range(X.shape[1]))  importances.plot.bar()

主成分分析 PCA

对特征进行主成分分析,并查看每个主成分的解释方差比。在前几个组件上具有较高负载的特性更为重要。

 from sklearn.decomposition import PCA import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as plt  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  pca = PCA() pca.fit(X)  plt.bar(range(pca.n_components_), pca.explained_variance_ratio_)  plt.xlabel('PCA components') plt.ylabel('Explained Variance')

方差分析 ANOVA

使用f_classif()获得每个特征的方差分析f值。f值越高,表明特征与目标的相关性越强。

 from sklearn.feature_selection import f_classif import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as plt  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  fval = f_classif(X, y) fval = pd.Series(fval[0], index=range(X.shape[1])) fval.plot.bar()

卡方检验

使用chi2()获得每个特征的卡方统计信息。得分越高的特征越有可能独立于目标。

 from sklearn.feature_selection import chi2 import pandas as pd from sklearn.datasets import load_breast_cancer import matplotlib.pyplot as plt  X, y = load_breast_cancer(return_X_y=True) df = pd.DataFrame(X, columns=range(30)) df['y'] = y  chi_scores = chi2(X, y) chi_scores = pd.Series(chi_scores[0], index=range(X.shape[1])) chi_scores.plot.bar()

为什么不同的方法会检测到不同的特征?

不同的特征重要性方法有时可以识别出不同的特征是最重要的,这是因为:

他们用不同的方式衡量重要性:

有的使用不同特特征进行预测,监控精度下降

像XGBOOST或者回国模型使用内置重要性来进行特征的重要性排列

而PCA着眼于方差解释

不同模型有不同模型的方法:

线性模型倾向于线性关系、树模型倾向于接近根的特征

交互作用:

有的方法可以获取特征之间的相互左右,而有一些则不行,这就会导致结果的差异

不稳定:

使用不同的数据子集,重要性值可能在同一方法的不同运行中有所不同,这是因为数据差异决定的

Hyperparameters:

通过调整超参数,如PCA组件或树深度,也会影响结果

所以不同的假设、偏差、数据处理和方法的可变性意味着它们并不总是在最重要的特征上保持一致。

选择特征重要性分析方法的一些最佳实践

  • 尝试多种方法以获得更健壮的视图
  • 聚合结果的集成方法
  • 更多地关注相对顺序,而不是绝对值
  • 差异并不一定意味着有问题,检查差异的原因会对数据和模型有更深入的了解

https://avoid.overfit.cn/post/b3803a40489d4eb0b6d5eda77ddf1556

作者:Roushanak Rahmat, PhD

来源地址:https://blog.csdn.net/m0_46510245/article/details/132914621

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python中进行特征重要性分析的9个常用方法

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

如何用XGBoost在Python 中进行特征重要性分析和特征选择

如何用XGBoost在Python 中进行特征重要性分析和特征选择,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。使用诸如梯度增强之类的决策树方法的集成的好处是,
2023-06-15

Python中使用sklearn进行特征降维的方法

在Python中,可以使用sklearn库中的特征降维方法对数据进行处理。主要包括基于PCA算法的降维、基于LDA算法的降维、以及利用特征选择方法进行降维。这些方法可以提高模型的训练效率和预测准确率,特别是在高维数据集中具有重要的作用
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录