我的编程空间,编程开发者的网络收藏夹
学习永远不晚

FreeRTOS动态内存分配管理heap_4示例

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

FreeRTOS动态内存分配管理heap_4示例

heap_4.c 内存堆管理

heap_4也是用链表来管理,但是链表头用的是结构体,链表尾用的是指针,链表尾占用ucHeap内存

数据结构如下


typedef struct A_BLOCK_LINK
{
	struct A_BLOCK_LINK *pxNextFreeBlock;	
	size_t xBlockSize;						
} BlockLink_t;

头尾链表如下,注意pxEnd是指针


static BlockLink_t xStart, *pxEnd = NULL;

分配

void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
	//挂起调度器,防止函数重入
	vTaskSuspendAll();
	{
		
		//pxEnd是NULL则是第一次调用,需要初始化堆
		if( pxEnd == NULL )
		{
			prvHeapInit();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		
		//xBlockAllocatedBit = 0x8000_0000;
		//待分配的内存不能大于0x7FFF_FFFF,否则失败
		if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
		{
			
			if( xWantedSize > 0 )
			{
			    //加上管理结构体占用大小
				xWantedSize += xHeapStructSize;
				
				//xWantedSize大小进行字节对齐调整
				if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
				{
					
					xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
					configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
            //xWantedSize大于0且小于等于此时还剩字节数才能往下申请
			if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
			{
				
				//pxPreviousBlock指向头链表
				pxPreviousBlock = &xStart;
				//pxBlock指向头链表的下一个即第一个空闲块
				pxBlock = xStart.pxNextFreeBlock;
				//开始遍历找到第一个比xWantedSize大的空闲块
				while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
				{
				    //pxPreviousBlock保存空闲块的上一个
					pxPreviousBlock = pxBlock;
					pxBlock = pxBlock->pxNextFreeBlock;
				}
				
				//遍历完成pxBlock != pxEnd说明找到符合的空闲块
				if( pxBlock != pxEnd )
				{
					
					//返回给用户的内存地址要跳过管理结构体占用的内存大小
					pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
					
					//因为pxPreviousBlock->pxNextFreeBlock指向的空闲块被分配了,
					//所以要把pxPreviousBlock->pxNextFreeBlock指向的空闲块移除出去,
					//也就是pxPreviousBlock->pxNextFreeBlock指向pxBlock->pxNextFreeBlock
					//也就是跳过分配出去的那个块
					pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
					
					//这里判断,
					//如果将要分配出去的内存块大小xBlockSize比分配出去的还要大heapMINIMUM_BLOCK_SIZE(2倍管理结构体)
					//为了节约就把再分成2块,一块返回给用户,
					//一块构造一个新的空闲管理结构体后插入空闲链表
					if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
					{
						
						//注意这里xWantedSize是管理结构体和和真正需要字节数之和
						//所以是在pxBlock基础上偏移xWantedSize作为新的管理结构体
						pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
						configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
						
						//pxNewBlockLink新的管理结构体大小
						//是待分配pxBlock->xBlockSize-xWantedSize
						pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
						//更新pxBlock->xBlockSize大小为xWantedSize
						pxBlock->xBlockSize = xWantedSize;
						
						//把新构造的空闲管理结构体按结构体地址升序插入到空闲链表
						prvInsertBlockIntoFreeList( pxNewBlockLink );
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
					//还剩空闲字节数要减去分配出去的
					xFreeBytesRemaining -= pxBlock->xBlockSize;
					//更新历史最小剩余字节数
					if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
					{
						xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
					}
					else
					{
						mtCOVERAGE_TEST_MARKER();
					}
					
					//xBlockSize最高位置1表示被这块内存被分配出去
					pxBlock->xBlockSize |= xBlockAllocatedBit;
					//所以管理结构体的next要指向NULL
					pxBlock->pxNextFreeBlock = NULL;
				}
				else
				{
					mtCOVERAGE_TEST_MARKER();
				}
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
		traceMALLOC( pvReturn, xWantedSize );
	}//解挂调度器
	( void ) xTaskResumeAll();
    //如果定义了分配失败钩子函数,分配失败则执行钩子函数
	#if( configUSE_MALLOC_FAILED_HOOK == 1 )
	{
		if( pvReturn == NULL )
		{
			extern void vApplicationMallocFailedHook( void );
			vApplicationMallocFailedHook();
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
	#endif
//返回给用户
	configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
	return pvReturn;
}

内存堆初始化

static void prvHeapInit( void )
{
BlockLink_t *pxFirstFreeBlock;
uint8_t *pucAlignedHeap;
size_t uxAddress;
size_t xTotalHeapSize = configTOTAL_HEAP_SIZE;
	
	uxAddress = ( size_t ) ucHeap;
    //这里进行字节对齐
	if( ( uxAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
	{
		uxAddress += ( portBYTE_ALIGNMENT - 1 );
		uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
		//此时xTotalHeapSize表示管理的总内存字节数
		xTotalHeapSize -= uxAddress - ( size_t ) ucHeap;
	}
    //pucAlignedHeap指向对齐后首址
	pucAlignedHeap = ( uint8_t * ) uxAddress;
	
	//初始化头链表
	xStart.pxNextFreeBlock = ( void * ) pucAlignedHeap;
	xStart.xBlockSize = ( size_t ) 0;

	
	//uxAddress此时指向管理内存最后
	uxAddress = ( ( size_t ) pucAlignedHeap ) + xTotalHeapSize;
	//退回一个BlockLink_t(字节对齐后)大小字节数
	uxAddress -= xHeapStructSize;
	//再次字节对齐
	uxAddress &= ~( ( size_t ) portBYTE_ALIGNMENT_MASK );
	//初始化尾链表
	pxEnd = ( void * ) uxAddress;
	pxEnd->xBlockSize = 0;
	pxEnd->pxNextFreeBlock = NULL;
	
	//初始化第一个空闲块
	pxFirstFreeBlock = ( void * ) pucAlignedHeap;
	//第一个空闲块字节数=uxAddress(此时值=pxEnd) - pxFirstFreeBlock(此时值=pucAlignedHeap)
	pxFirstFreeBlock->xBlockSize = uxAddress - ( size_t ) pxFirstFreeBlock;
	//第一个空闲块指向尾节点
	pxFirstFreeBlock->pxNextFreeBlock = pxEnd;
	
	//更新历史还剩最少空闲字节数
	xMinimumEverFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
	//更新实时还剩字节数
	xFreeBytesRemaining = pxFirstFreeBlock->xBlockSize;
	
	//这里sizeof( size_t ) = 4,heapBITS_PER_BYTE=8,表示1字节有8bit
	//xBlockAllocatedBit = 1<<(4*8-1) = 0x8000_0000;
	//FreeRTOS用xBlockSize最高位来标记此内存块是否空闲
	//所以heap4最大只能管理0x7FFF_FFFF字节内存
	xBlockAllocatedBit = ( ( size_t ) 1 ) << ( ( sizeof( size_t ) * heapBITS_PER_BYTE ) - 1 );
}

初始化后的示意图如下
注意xEnd结构体占用的时堆内存

在这里插入图片描述

把新构造的结构体插入空闲链表

static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
{
BlockLink_t *pxIterator;
uint8_t *puc;
	
	//这里是根据内存块的地址大小来迭代寻找和pxBlockToInsert相邻的前一个空闲的内存块
	for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
	{
		
	}
	
	//这里判断pxBlockToInsert是否能与pxBlockToInsert相邻的前一个空闲的内存块合并
	puc = ( uint8_t * ) pxIterator;
	if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert )
	{   //这里做向前合并,xBlockSize相加
		pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
		//pxBlockToInsert指向pxIterator
		pxBlockToInsert = pxIterator;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
	
	//这里再判断是否能与后一个内存块合并
	puc = ( uint8_t * ) pxBlockToInsert;
	if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock )
	{   //这里做向后合并,如果要合并的后向不是pxEnd
		if( pxIterator->pxNextFreeBlock != pxEnd )
		{  //这里把后项合入到pxBlockToInsert
			
			pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
			//pxBlockToInsert的下一个指向后项指向的空闲块
			pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
		}
		else//如果后项是pxEnd就不能合并,指向pxEnd
		{
			pxBlockToInsert->pxNextFreeBlock = pxEnd;
		}
	}
	else//不相邻就只能插入链表
	{
		pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
	}
	
	//这里如果不等,说明没有做前向合并操作,
	//需要更新下链表插入
	if( pxIterator != pxBlockToInsert )
	{
		pxIterator->pxNextFreeBlock = pxBlockToInsert;
	}
	else
	{
		mtCOVERAGE_TEST_MARKER();
	}
}

释放

void vPortFree( void *pv )
{
uint8_t *puc = ( uint8_t * ) pv;
BlockLink_t *pxLink;
	if( pv != NULL )
	{
		
		//偏移回地址
		puc -= xHeapStructSize;
		
		pxLink = ( void * ) puc;
		
		//检查这个内存块是否是heap4之前分配的
		configASSERT( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 );
		configASSERT( pxLink->pxNextFreeBlock == NULL );
		if( ( pxLink->xBlockSize & xBlockAllocatedBit ) != 0 )
		{
			if( pxLink->pxNextFreeBlock == NULL )
			{
				
				//把分配的xBlockSize最高位标记清除
				pxLink->xBlockSize &= ~xBlockAllocatedBit;
                //挂起调度器
				vTaskSuspendAll();
				{
					
				   //更新剩余内存数
					xFreeBytesRemaining += pxLink->xBlockSize;
					traceFREE( pv, pxLink->xBlockSize );
					//插入空闲内存链表
					prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
				}//解挂调度器
				( void ) xTaskResumeAll();
			}
			else
			{
				mtCOVERAGE_TEST_MARKER();
			}
		}
		else
		{
			mtCOVERAGE_TEST_MARKER();
		}
	}
}

还剩空闲字节数

size_t xPortGetFreeHeapSize( void )
{
	return xFreeBytesRemaining;
}

历史剩余最小字节数

size_t xPortGetMinimumEverFreeHeapSize( void )
{
	return xMinimumEverFreeBytesRemaining;
}

适用范围、特点

heap4在heap2基础上加入了合并内存碎片算法,把相邻的内存碎片合并成一个更大的块、且xEnd结构体占用的是内存堆空间。
heap2的管理结构体链表是按照xBlockSize大小升序串起来,所以空闲块插入也是按照空闲块大小升序插入,而heap4管理结构体是按照空闲块管理结构体地址大小升序串起来,这样做是为了判断地址是否连续,若连续则能进行碎片合并,且用xBlockSize的最高为标记是否是已经分配的。

以上就是FreeRTOS动态内存分配管理heap_4示例的详细内容,更多关于FreeRTOS动态内存分配的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

FreeRTOS动态内存分配管理heap_4示例

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

FreeRTOS动态内存分配管理示例分析

本篇内容主要讲解“FreeRTOS动态内存分配管理示例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“FreeRTOS动态内存分配管理示例分析”吧!动态内存管理FreeRTOS提供5种动态内存
2023-06-29

FreeRTOS动态内存分配怎么管理heap5

今天小编给大家分享一下FreeRTOS动态内存分配怎么管理heap5的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。heap_
2023-06-29

C语言中动态内存管理的示例分析

这篇文章主要介绍了C语言中动态内存管理的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。什么是动态内存分配我们都知道在C语言中,定义变量的时候,系统就会为这个变量分配内
2023-06-25

C语言中动态内存管理实例分析

今天小编给大家分享一下C语言中动态内存管理实例分析的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。1.动态内存开辟的原因常见的
2023-07-02

C语言动态内存管理实例代码分析

这篇文章主要介绍了C语言动态内存管理实例代码分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇C语言动态内存管理实例代码分析文章都会有所收获,下面我们一起来看看吧。1.动态内存开辟的原因常见的内存开辟方式int
2023-07-02

C/C++内存管理的示例分析

这篇文章主要介绍了C/C++内存管理的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。C/C++赋予程序员管理内存的自由,是C/C++语言特色,虽然这引入了复杂度和危险
2023-06-15

C++中内存管理的示例分析

这篇文章将为大家详细讲解有关C++中内存管理的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。概述内存管理的原理庞大而复杂,然而这些都被操作系统进行了封装,并对外预留了API,这些api被c++调用
2023-06-25

Linux内存管理之内存回收的示例分析

这篇文章主要介绍了Linux内存管理之内存回收的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。1.1 内存回收的目标不是所有的物理内存都可以参与回收的,比如要是把内核
2023-06-16

C语言中动态内存的示例分析

这篇文章主要为大家展示了“C语言中动态内存的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“C语言中动态内存的示例分析”这篇文章吧。1.关于动态内存的函数1.1 malloc和free函数
2023-06-29

C语言中的动态内存分配实例分析

本篇内容主要讲解“C语言中的动态内存分配实例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“C语言中的动态内存分配实例分析”吧!什么是动态内存分配我们目前已经知道的内存开辟的方式有:int v
2023-07-02

C语言动态内存管理malloc柔性数组示例详解

这篇文章主要为大家介绍了C语言动态内存管理malloc柔性数组示例详解,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2022-11-13

JVM内存管理深入垃圾收集器与内存分配策略的示例分析

这篇文章给大家介绍JVM内存管理深入垃圾收集器与内存分配策略的示例分析,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。Java与C++之间有一堵由内存动态分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出
2023-06-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录