我的编程空间,编程开发者的网络收藏夹
学习永远不晚

怎么利用python处理原始音频数据

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

怎么利用python处理原始音频数据

本篇内容介绍了“怎么利用python处理原始音频数据”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

一、基础知识

PCM(pulse code modulation) ,即脉冲编码调制,是将模拟信号转为数字信号的一种编码系统。而模数转换主要分两步,首先对连续的模拟信号进行采样,然后把采样得到的数据转化为数值,即量化。

设x xx为输入信号,F ( x ) F(x)F(x)为量化后的信号,则F ( x ) F(x)F(x)既可以是线性的,也可以是非线性的。在audioop中,主要提供三种编码支持,分别是a-Lawμ-Law以及ADPCM

怎么利用python处理原始音频数据

在中国和欧洲主要实用的编码方式为A-Law,其表达式为:

怎么利用python处理原始音频数据

其中A AA为压缩系数,在G.726标准中建议87.56。

ADPCM(Adaptive Differential PCM),即自适应差分PCM。

由于模拟信号的连续性,一般来说相邻时间单位的信号往往具有较高的线性度,甚至彼此相差无几,从而可以被高效率的压缩。然而,也存在跳跃幅度较大的信号,如果完全以缓变为原则,那么必然会丢失这部分数据。为了均衡这种差异,就需要进行自适应量化。

audioop中支持的Intel/DVI ADPCM算法可以在网上找到,但是信息并不多而且都很老旧,貌似不太重要的样子,甚至知网都搜不到,所以这里就不详细解读了。

二、转换函数

audioop提供了ADPCMA-Lawμ-Law和线性采样之间的转换函数

采样ADPCMA-Lawμ-Law
lin2linlin2adpcmlin2alawlin2ulaw
 adpcm2linalaw2linulaw2lin

其中,与A-Lawμ-Law有关的转换函数的输入参数为(fragment, width),分别代表待处理片段和位宽;adpcm则会多一个state元组作为第三个参数,表示编码器状态。

lin2lin是将线性片段在1、2、3 和 4 字节格式之间转换的函数,其输入参数为(fragment, width, newwidth)。

下面新建一些数据来测试一下编码转换函数,

#下面代码来自于test_audioop.pyimport audioopimport sysimport unittestpack = lambda width, data :b''.join(    v.to_bytes(width, sys.byteorder, signed=True) for v in data)packs = {w: (lambda *data, width=w: pack(width, data)) for w in (1, 2, 3, 4)}unpack = lambda width, data: [int.from_bytes(    data[i: i + width], sys.byteorder, signed=True)    for i in range(0, len(data), width)]datas = {    1: b'\x00\x12\x45\xbb\x7f\x80\xff',    2: packs[2](0, 0x1234, 0x4567, -0x4567, 0x7fff, -0x8000, -1),    3: packs[3](0, 0x123456, 0x456789, -0x456789, 0x7fffff, -0x800000, -1),    4: packs[4](0, 0x12345678, 0x456789ab, -0x456789ab,                0x7fffffff, -0x80000000, -1),}

则datas的值为:

>>> for key in datas : print(datas[key])
...
b'\x00\x12E\xbb\x7f\x80\xff'
b'\x00\x004\x12gE\x99\xba\xff\x7f\x00\x80\xff\xff'
b'\x00\x00\x00V4\x12\x89gEw\x98\xba\xff\xff\x7f\x00\x00\x80\xff\xff\xff'
b'\x00\x00\x00\x00xV4\x12\xab\x89gEUv\x98\xba\xff\xff\xff\x7f\x00\x00\x00\x80\xff\xff\xff\xff'
>

则其转换函数测试如下:

>>> datas[1]
b'\x00\x12E\xbb\x7f\x80\xff'        #将要处理的1位线性码
>>> unpack(1,datas[1])
[0, 18, 69, -69, 127, -128, -1]     #转为整型
# 将1字节线性码转为2字节线性码
>>> datas1_2 = audioop.lin2lin(datas[1], 1, 2)
>>> print(datas1_2)
b'\x00\x00\x00\x12\x00E\x00\xbb\x00\x7f\x00\x80\x00\xff'
>>> unpack(2,datas1_2)    #转为整型,其值为datas[1]*256
[0, 4608, 17664, -17664, 32512, -32768, -256]
# 将1字节线性码转为1字节u-Law码
>>> datas1_u = audioop.lin2ulaw(datas[1], 1)
>>> unpack(1,datas1_u)   #转为整型,这个数和u-law的公式对不上,可能是其他算法
[-1, -83, -114, 14, -128, 0, 103]

三、片段特征函数

下表中函数的输入为(fragment, width),分别代表待统计片段和位宽。

 返回值
avg片段采样值的均值
avgpp片段采样值的平均峰峰值
max片段采样值的最大绝对值
maxpp声音片段中的最大峰峰值
minmax由片段采样值中最小和最大值组成的元组
rms片段的均方根
cross片段穿越零点的次数

getsample(fragment, width, index),顾名思义用于采样,返回段中采样值索引index的值。

findfactor(fragment, reference),返回一个系数F使得rms(add(fragment, mul(reference, -F)))最小,即返回的系数乘以reference后与fragment最匹配。两个片段都应包含 2 字节宽的采样。

findfit(fragment, reference),尽可能尝试让 reference 匹配 fragment 的一部分。

findmax(fragment, length),在fragment中搜索所有长度为length的采样切片中,能量最大的那一个切片,即返回 i 使得 rms(fragment[i*2:(i+length)*2]) 最大。

四、片段操作

其返回值均为片段,下表的参数中,f表示fragment,w表示width,L表示lfactor,R表示rfactor

怎么利用python处理原始音频数据

audioop.ratecv(f, w, nchannels, inrate, outrate, state[, weightA[, weightB]])

可用于转换输入片段的帧速率,其中

  • state为元组,表示转换器状态

  • weightA和weightB是简单数字滤波器的参数,默认为 1 和 0。

“怎么利用python处理原始音频数据”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注编程网网站,小编将为大家输出更多高质量的实用文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

怎么利用python处理原始音频数据

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么利用python处理原始音频数据

本篇内容介绍了“怎么利用python处理原始音频数据”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!一、基础知识PCM(pulse code
2023-06-22

怎么用Octave处理音频

本篇内容介绍了“怎么用Octave处理音频”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!Octave 是一个类似于 Linux 上的 Mat
2023-06-27

如何使用 PHP 函数处理音频数据?

如何使用 php 函数处理音频数据?安装 php gd 库使用 imagecreatefromjpeg() 和 imagecreatefrompng() 函数创建图像资源使用 imagejpeg() 和 imagepng() 函数保存图像使
如何使用 PHP 函数处理音频数据?
2024-05-02

Python中怎么爬取音频数据

本篇文章为大家展示了Python中怎么爬取音频数据,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。 分析频道3.下面就是开始获取每个频道中的全部音频数据了,前面通过解析页面获取到了美国频道的链接。比
2023-06-17

Python怎么利用ffmpeg处理视频素材

这篇文章主要介绍“Python怎么利用ffmpeg处理视频素材”,在日常操作中,相信很多人在Python怎么利用ffmpeg处理视频素材问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python怎么利用ffm
2023-06-21

Python 中怎么利用Pandas处理复杂的Excel数据

本篇文章为大家展示了Python 中怎么利用Pandas处理复杂的Excel数据,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。问题缘起pandas read_excel函数在读取Excel工作表方
2023-06-16

Python中怎么利用KNN算法处理缺失数据

这篇文章将为大家详细讲解有关Python中怎么利用KNN算法处理缺失数据,文章内容质量较高,因此小编分享给大家做个参考,希望大家阅读完这篇文章后对相关知识有一定的了解。KNN代表" K最近邻居",这是一种简单算法,可根据定义的最接近邻居数进
2023-06-16

如何利用Python多处理库处理3D数据

如何利用Python多处理库处理3D数据,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。今天我们将介绍处理大量数据时非常方便的工具。我不会只告诉您可能在手册中找到
2023-06-22

python怎么利用第三方库爬取热门视频和音乐

本篇内容介绍了“python怎么利用第三方库爬取热门视频和音乐”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!前言安装pippip3 inst
2023-06-02

怎么用python处理大量数据

处理大量数据,可以使用一些Python库和技术来优化效率和提高处理速度。以下是一些常用的方法:1. 使用适当的数据结构:使用适当的数据结构可以提高数据的访问和操作效率。例如,使用NumPy数组可以有效地处理大规模数值数据,使用Pandas数
2023-09-01

怎么用Python做数据预处理

这篇文章给大家介绍怎么用Python做数据预处理,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。前戏在拿到一份数据准备做挖掘建模之前,首先需要进行初步的数据探索性分析(你愿意花十分钟系统了解数据分析方法吗?),对数据探索
2023-06-02

怎么用python进行数据处理

使用Python进行数据处理可以使用各种库和工具。以下是一些常见的用于数据处理的Python库和工具:NumPy:用于数值计算和数组操作的库,提供了多维数组对象和各种计算函数,可以进行向量化操作和高效的数值运算。Pandas:提供了用于数
2023-10-25

怎么使用tcpdump查看原始数据包

今天给大家介绍一下怎么使用tcpdump查看原始数据包。文章的内容小编觉得不错,现在给大家分享一下,觉得有需要的朋友可以了解一下,希望对大家有所帮助,下面跟着小编的思路一起来阅读吧。尽管Snort之类的工具在筛选通过我们的网络而来的所有内容
2023-06-28

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录