pandas如何统计某一列或某一行的缺失值数目
短信预约 -IT技能 免费直播动态提醒
统计某一列或某一行的缺失值数目
1.使用isnull()
import pandas as pd
# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')
# 计算data每一行有多少个缺失值的值,即按行统计缺失值
rows_null = df.isnull().sum(axis=1)
# 下面则是按列统计缺失值
col_null = df.isnull().sum(axis=0)
#统计整个df的缺失值
all_null = df.isnull().sum().sum()
# 统计某一列的缺失值
idx_null = df['列名'].isnull().sum(axis=0)
2.使用count
import pandas as pd
# 首先导入数据
df = pd.read_csv('123.csv' , encoding='gbk')
# 计算data每一行有多少个非空的值,即按行统计非空值
rows_not_null = df.count(axis=1)
# 下面则是按列统计非空值
cols_not_null = df.count(axis=0)
cols_null = df.shape[1] - cols_not_null
# 统计某一列的非空值
col_not_null = df['列名'].count(axis=0)
利用pandas处理缺失值
处理缺失值
def missing_values(dataframe):
missing_ratio = (dataframe.isnull().sum() / len(dataframe))*100
missing_ratio = missing_ratio.drop(missing_ratio[missing_ratio == 0].index).sort_values(ascending=False)
missing_count = dataframe.isnull().sum()
missing_count = missing_count.drop(missing_count[missing_count == 0].index).sort_values(ascending=False)
info = pd.DataFrame({'Missing Ratio': missing_ratio, 'Missing Count': missing_count})
return info
以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341