我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python OpenCV实现图片预处理的方法详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python OpenCV实现图片预处理的方法详解

一、图片预处理

1.1 边界填充(padding)

方法 : cv2.copyMakeBorder

BORDER_REPLICATE:复制法,也就是复制最边缘像素。

BORDER_REFLECT:反射法,对感兴趣的图像中的像素在两边进行复制例如:fedcba|abcdefgh|hgfedcb

BORDER_REFLECT_101:反射法,也就是以最边缘像素为轴,对称,gfedcb|abcdefgh|gfedcba

BORDER_WRAP:外包装法cdefgh|abcdefgh|abcdefg

BORDER_CONSTANT:常量法,常数值填充。

import cv2
import matplotlib.pyplot as plt

img = cv2.imread('cat.png')
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)

top_size, bottom_size, left_size, right_size = (50, 50, 50, 50)

replicate = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, borderType=cv2.BORDER_REPLICATE)
reflect = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT)
reflect101 = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_REFLECT_101)
wrap = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_WRAP)
constant = cv2.copyMakeBorder(img, top_size, bottom_size, left_size, right_size, cv2.BORDER_CONSTANT, value=0)

plt.subplot(231), plt.imshow(img, 'gray'), plt.title('ORIGINAL')
plt.subplot(232), plt.imshow(replicate, 'gray'), plt.title('REPLICATE')
plt.subplot(233), plt.imshow(reflect, 'gray'), plt.title('REFLECT')
plt.subplot(234), plt.imshow(reflect101, 'gray'), plt.title('REFLECT_101')
plt.subplot(235), plt.imshow(wrap, 'gray'), plt.title('WRAP')
plt.subplot(236), plt.imshow(constant, 'gray'), plt.title('CONSTANT')

plt.show()

其效果如下:

cat.png原图下载:

dog.png原图下载:

1.2 融合图片(mixup)

方法 : cv2.addWeighted(class="lazy" data-src1, alpha, class="lazy" data-src2, beta, gamma)

  • class="lazy" data-src1, class="lazy" data-src2:需要融合相加的两副大小和通道数相等的图像
  • alpha:class="lazy" data-src1的权重
  • beta:class="lazy" data-src2的权重
  • gamma:gamma修正系数,不需要修正设置为0
import cv2
import matplotlib.pyplot as plt

img_cat = cv2.imread('cat.png')
img_cat = cv2.cvtColor(img_cat, cv2.COLOR_RGB2BGR)
cat_shape = [img_cat.shape[1], img_cat.shape[0]]  # 因为cv2读取通道数是最后一位

img_dog = cv2.imread('dog.png')
img_dog = cv2.cvtColor(img_dog, cv2.COLOR_RGB2BGR)
img_dog = cv2.resize(img_dog, cat_shape)

mixup = cv2.addWeighted(img_cat, 0.55, img_dog, 0.45, 0)

plt.imshow(mixup)
plt.show()

其效果如下:

1.3 图像阈值

ret, dst = cv2.threshold(class="lazy" data-src, thresh, maxval, type)

  • class="lazy" data-src: 输入图,只能输入单通道图像,通常来说为灰度图
  • dst: 输出图
  • thresh: 阈值
  • maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
  • type:二值化操作的类型,包含以下5种类型:
  • cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
  • cv2.THRESH_BINARY_INV THRESH_BINARY的反转
  • cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
  • cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
  • cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

其效果如下:

二、滤波器

2.1 均值滤波器

import cv2
import numpy as np

img = cv2.imread('lenaNoise.png')

cv2.imshow('blur', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3))

lenaNoise.png原图展示:

白色为图片,黄色区域为滤波器窗口:

2.2 方框滤波器

# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img, -1, (3, 3), normalize=True)

总结: 均值滤波器是取滤波器中的平均值,然后继续滑动下一个窗口。

2.3 高斯滤波器

# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1)

总结: 高斯滤波器是滤波器窗口中离中心值近的权值大,用高斯分布增加一个权重,然后继续滑动下一个窗口。

2.4 中值滤波

# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5)  # 中值滤波

总结: 中值滤波器是滤波器窗口中所有数字的中间值,如黄色框中9个数的中间值为113,然后继续滑动下一个窗口。

2.5 所有滤波器按照上述顺序输出

# 展示所有的
res = np.hstack((blur, aussian, median))
# print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结:中值滤波器的图效果最好,可以解决一些椒盐噪声。

以上就是Python OpenCV实现图片预处理的方法详解的详细内容,更多关于Python OpenCV图片预处理的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python OpenCV实现图片预处理的方法详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python实现图片处理和特征提取详解

这是一张灵异事件图。。。开个玩笑,这就是一张普通的图片。 毫无疑问,上面的那副图画看起来像一幅电脑背景图片。这些都归功于我的妹妹,她能够将一些看上去奇怪的东西变得十分吸引眼球。然而,我们生活在数字图片的年代,我们也很少去想这些图片是在怎么存
2022-06-04

Python去除图片水印实现方法详解

这篇文章主要为大家详细介绍了如何利用Python实现处理图片水印的相关资料,主要是实现图片水印的去除效果,感兴趣的小伙伴可以尝试一下
2023-01-06

Python批量处理图片大小尺寸方法详解

这篇文章主要介绍了用Python批量处理图片大小尺寸的方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
2022-11-13

Python基于OpenCV的视频图像处理详解

OpenCV是一个开源的,跨平台的计算机视觉库,它采用优化的C/C++代码编写,能够充分利用多核处理器的优势。本文主要和大家来聊聊基于Python OpenCv的视频图像处理,感兴趣的可以了解一下
2023-02-02

PHP实现图片旋转的方法详解

这篇文章主要为大家详细介绍了PHP如何实现图片旋转功能,文中的示例代码讲解详细,对我们学习PHP有一定帮助,感兴趣的小伙伴可以了解一下
2022-11-13

PHP实现PDF转图片的方法详解

这篇文章主要给大家介绍了关于PHP将PDF转图片的实现方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
2022-12-21

详解三种Javascript图片预加载的方法

预加载图片是提高用户体验的一个很好方法。图片预先加载到浏览器中,访问者便可顺利地在你的网站上冲浪,并享受到极快的加载速度。

Python实现处理apiDoc转swagger的方法详解

这篇文章主要为大家详细介绍了Python实现处理apiDoc转swagger的方法,文中的示例代码讲解详细,具有一定的学习价值,感兴趣的小伙伴可以了解一下
2023-02-02

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录