我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Pytorch中Softmax与LogSigmoid的对比分析

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Pytorch中Softmax与LogSigmoid的对比分析

Pytorch中Softmax与LogSigmoid的对比

torch.nn.Softmax

作用:

1、将Softmax函数应用于输入的n维Tensor,重新改变它们的规格,使n维输出张量的元素位于[0,1]范围内,并求和为1。

2、返回的Tensor与原Tensor大小相同,值在[0,1]之间。

3、不建议将其与NLLLoss一起使用,可以使用LogSoftmax代替之。

4、Softmax的公式:

在这里插入图片描述

参数:

维度,待使用softmax计算的维度。

例子:


# 随机初始化一个tensor
a = torch.randn(2, 3)
print(a) # 输出tensor
# 初始化一个Softmax计算对象,在输入tensor的第2个维度上进行此操作
m = nn.Softmax(dim=1)
# 将a进行softmax操作
output = m(a)
print(output) # 输出tensor

tensor([[ 0.5283,  0.3922, -0.0484],
        [-1.6257, -0.4775,  0.5645]])
tensor([[0.4108, 0.3585, 0.2307],
        [0.0764, 0.2408, 0.6828]])

可以看见的是,无论输入的tensor中的值为正或为负,输出的tensor中的值均为正值,且加和为1。

当m的参数dim=1时,输出的tensor将原tensor按照行进行softmax操作;当m的参数为dim=0时,输出的tensor将原tensor按照列进行softmax操作。

深度学习拓展:

一般来说,Softmax函数会用于分类问题上。例如,在VGG等深度神经网络中,图像经过一系列卷积、池化操作后,我们可以得到它的特征向量,为了进一步判断此图像中的物体属于哪个类别,我们会将该特征向量变为:类别数 * 各类别得分 的形式,为了将得分转换为概率值,我们会将该向量再经过一层Softmax处理。

torch.nn.LogSigmoid

公式:

在这里插入图片描述

函数图:

可以见得,函数值在[0, -]之间,输入值越大函数值距离0越近,在一定程度上解决了梯度消失问题。

例子:


a = [[ 0.5283,  0.3922, -0.0484],
    [-1.6257, -0.4775,  0.5645]]
a = torch.tensor(a)
lg = nn.LogSigmoid()
lgoutput = lg(a)
print(lgoutput)

tensor([[-0.4635, -0.5162, -0.7176],
        [-1.8053, -0.9601, -0.4502]])

二者比较:


import torch
import torch.nn as nn
# 设置a为 2*3  的tensor
a = [[ 0.5283,  0.3922, -0.0484],
    [-1.6257, -0.4775,  0.5645]]
a = torch.tensor(a)
print(a)
print('a.mean:', a.mean(1, True)) # 输出a的 行平均值

m = nn.Softmax(dim=1) # 定义Softmax函数,dim=1表示为按行计算
lg = nn.LogSigmoid() # 定义LogSigmoid函数

output = m(a)
print(output)
# 输出a经过Softmax的结果的行平均值
print('output.mean:', output.mean(1, True)) 

lg_output = lg(a)
print(lg_output)
# 输出a经过LogSigmoid的结果的行平均值
print('lgouput.mean:', lg_output.mean(1, True)) 

# 结果:
tensor([[ 0.5283,  0.3922, -0.0484],
        [-1.6257, -0.4775,  0.5645]])
a.mean: tensor(-0.1111)

tensor([[0.4108, 0.3585, 0.2307],
        [0.0764, 0.2408, 0.6828]])
output.mean: tensor([[0.3333], [0.3333]]) # 经过Softmax的结果的行平均值

tensor([[-0.4635, -0.5162, -0.7176],
        [-1.8053, -0.9601, -0.4502]])
lgouput.mean: tensor([[-0.5658], [-1.0719]]) # 经过LogSigmoid的结果的行平均值

由上可知,继续考虑分类问题,相同的数据,经过Softmax和LogSigmoid处理后,若取最大概率值对应类别作为分类结果,那么:

1、第一行数据经过Softmax后,会选择第一个类别;经过LogSigmoid后,会选择第一个。

2、第二行数据经过Softmax后,会选择第三个类别;经过LogSigmoid后,会选择第三个。

3、一般来说,二者在一定程度上区别不是很大,由于sigmoid函数存在梯度消失问题,所以被使用的场景不多。

4、但是在多分类问题上,可以尝试选择Sigmoid函数来作为分类函数,因为Softmax在处理多分类问题上,会更容易出现各项得分十分相近的情况。瓶颈值可以根据实际情况定。

nn.Softmax()与nn.LogSoftmax()

nn.Softmax()计算出来的值,其和为1,也就是输出的是概率分布,具体公式如下:

这保证输出值都大于0,在0,1范围内。

而nn.LogSoftmax()公式如下:

由于softmax输出都是0-1之间的,因此logsofmax输出的是小于0的数,

softmax求导:

logsofmax求导:

例子:


import torch.nn as nn
import torch
import numpy as np

layer1=nn.Softmax()
layer2=nn.LogSoftmax()
 
input=np.asarray([2,3])
input=Variable(torch.Tensor(input))
 
output1=layer1(input)
output2=layer2(input)
print('output1:',output1)
print('output2:',output2)

输出:

output1: Variable containing:
0.2689
0.7311
[torch.FloatTensor of size 2]

output2: Variable containing:
-1.3133
-0.3133
[torch.FloatTensor of size 2]

以上为个人经验,希望能给大家一个参考,也希望大家多多支持编程网。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Pytorch中Softmax与LogSigmoid的对比分析

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

MySQL中InnoDB与MyISAM的对比分析

小编给大家分享一下MySQL中InnoDB与MyISAM的对比分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!对比InnoDB与MyISAM1、 存储结构MyI
2023-06-27

Golang中线程与协程的对比分析

Golang中线程与协程的对比分析在现代的软件开发中,多线程编程是一项非常常见的任务。而随着硬件技术的发展,多核处理器已经成为了主流,因此利用多线程并行处理数据已经成为了提高程序性能的重要手段。然而,传统的多线程编程中,线程的创建、销毁和
Golang中线程与协程的对比分析
2024-02-29

JS中Require与Import区别对比分析

这篇文章主要为大家介绍了JS中Require与Import区别对比分析,有需要的朋友可以借鉴参考下,希望能够有所帮助,祝大家多多进步,早日升职加薪
2023-03-02

hive与rdbms对比的分析说明

这篇文章给大家分享的是有关hive与rdbms对比的分析说明的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。Hive并非为联机事务处理而设计,Hive并不提供实时的查询和基于行级的数据更新操作。Hive是建立在Ha
2023-06-03

Java中对HashMap的深度分析与比较(转)

Java中对HashMap的深度分析与比较(转)[@more@]在Java的世界里,无论类还是各种数据,其结构的处理是整个程序的逻辑以及性能的关键。由于本人接触了一个有关性能与逻辑同时并存的问题,于是就开始研究这方面的问题。找遍了大大小小的
2023-06-03

fastapi与django异步的并发对比分析

这篇文章主要介绍了fastapi与django异步的并发对比分析,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教
2023-03-15

Hadoop与传统数据库的对比分析

Hadoop和传统数据库在很多方面有着明显的区别,主要包括以下几点:数据处理方式:Hadoop是一个分布式计算框架,采用MapReduce算法对大规模数据进行并行处理。它适用于处理大数据量的批量作业,适合于数据处理和分析。传统数据库是基于
Hadoop与传统数据库的对比分析
2024-02-29

Vue3中的shallowRef 和shallowReactive对比分析

这篇文章主要介绍了Vue3中的shallowRef 和shallowReactive,通过示例代码逐一对他们的使用做的详细介绍,文末补充介绍了vue3的shallowRef()、shallowReactive()和shallowReadonly()的使用,需要的朋友可以参考下
2023-01-05

HBase 与 Cassandra 架构对比分析的经验分享

架构对比HBase和Cassandra几乎是一个年份发起,又都是在2010年成为Apache的顶级项目,不过如果我们去细品其内部机制,我们会发现其实两者是完全不同的架构风格。HBASE起源于Google BigTable,几乎遵从了BigTable论文的大多数
HBase 与 Cassandra 架构对比分析的经验分享
2021-10-09

Rust中的Copy和Clone对比分析

这篇文章主要介绍了Rust中的Copy和Clone及区别对比分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下
2023-05-17

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录