我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Redis中如何使用内存淘汰策略

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Redis中如何使用内存淘汰策略

Redis中如何使用内存淘汰策略,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来学习下,希望你能有所收获。

Redis配置内存

1、通过配置文件配置 通过在Redis安装目录下面的redis.conf配置文件中添加以下配置设置内存大小

//设置Redis最大占用内存大小为100M  maxmemory   100mb

redis的配置文件不一定使用的是安装目录下面的redis.conf文件,启动redis服务的时候是可以传一个参数指定redis的配置文件的

2、通过命令修改 Redis支持运行时通过命令动态修改内存大小

//设置Redis最大占用内存大小为100M  127.0.0.1:6379> config set maxmemory 100mb  //获取设置的Redis能使用的最大内存大小  127.0.0.1:6379> config get maxmemory

如果不设置最大内存大小或者设置最大内存大小为0,在64位操作系统下不限制内存大小,在32位操作系统下最多使用3GB内存

Redis的内存淘汰

既然可以设置Redis最大占用内存大小,那么配置的内存就有用完的时候。那在内存用完的时候,还继续往Redis里面添加数据不就没内存可用了吗?实际上Redis定义了几种策略用来处理这种情况:

1.noeviction(默认策略):对于写请求不再提供服务,直接返回错误(DEL请求和部分特殊请求除外)

2.allkeys-lru:从所有key中使用LRU算法进行淘汰

3.volatile-lru:从设置了过期时间的key中使用LRU算法进行淘汰

4.allkeys-random:从所有key中随机淘汰数据

5.volatile-random:从设置了过期时间的key中随机淘汰

6.volatile-ttl:在设置了过期时间的key中,根据key的过期时间进行淘汰,越早过期的越优先被淘汰

当使用volatile-lru、volatile-random、volatile-ttl这三种策略时,如果没有key可以被淘汰,则和noeviction一样返回错误

如何获取及设置内存淘汰策略 获取当前内存淘汰策略:

127.0.0.1:6379> config get maxmemory-policy

通过配置文件设置淘汰策略(修改redis.conf文件):

maxmemory-policy allkeys-lru

通过命令修改淘汰策略:

127.0.0.1:6379> config set maxmemory-policy allkeys-lru

LRU算法

1.什么是LRU? 上面说到了Redis可使用最大内存使用完了,是可以使用LRU算法进行内存淘汰的,那么什么是LRU算法呢?

LRU(Least Recently Used),即最近最少使用,是一种缓存置换算法。在使用内存作为缓存的时候,缓存的大小一般是固定的。当缓存被占满,这个时候继续往缓存里面添加数据,就需要淘汰一部分老的数据,释放内存空间用来存储新的数据。这个时候就可以使用LRU算法了。其核心思想是:如果一个数据在最近一段时间没有被用到,那么将来被使用到的可能性也很小,所以就可以被淘汰掉。

使用java实现一个简单的LRU算法

public class LRUCache<k, v> {      //容量      private int capacity;      //当前有多少节点的统计      private int count;      //缓存节点      private Map<k, Node<k, v>> nodeMap;      private Node<k, v> head;      private Node<k, v> tail;      public LRUCache(int capacity) {          if (capacity < 1) {              throw new IllegalArgumentException(String.valueOf(capacity));          }          this.capacity = capacity;          this.nodeMap = new HashMap<>();          //初始化头节点和尾节点,利用哨兵模式减少判断头结点和尾节点为空的代码          Node headNode = new Node(null, null);          Node tailNode = new Node(null, null);          headNode.next = tailNode;          tailNode.pre = headNode;          this.head = headNode;          this.tail = tailNode;      }      public void put(k key, v value) {          Node<k, v> node = nodeMap.get(key);          if (node == null) {              if (count >= capacity) {                  //先移除一个节点                  removeNode();              }              node = new Node<>(key, value);              //添加节点              addNode(node);          } else {              //移动节点到头节点              moveNodeToHead(node);          }      }      public Node<k, v> get(k key) {          Node<k, v> node = nodeMap.get(key);          if (node != null) {              moveNodeToHead(node);          }          return node;      }      private void removeNode() {          Node node = tail.pre;          //从链表里面移除          removeFromList(node);          nodeMap.remove(node.key);          count--;      }      private void removeFromList(Node<k, v> node) {          Node pre = node.pre;          Node next = node.next;          pre.next = next;          next.pre = pre;          node.next = null;          node.pre = null;      }      private void addNode(Node<k, v> node) {          //添加节点到头部          addToHead(node);          nodeMap.put(node.key, node);          count++;      }      private void addToHead(Node<k, v> node) {          Node next = head.next;          next.pre = node;          node.next = next;          node.pre = head;          head.next = node;      }      public void moveNodeToHead(Node<k, v> node) {          //从链表里面移除          removeFromList(node);          //添加节点到头部          addToHead(node);      }      class Node<k, v> {          k key;          v value;          Node pre;          Node next;          public Node(k key, v value) {              this.key = key;              this.value = value;          }      }  }

上面这段代码实现了一个简单的LUR算法,代码很简单,也加了注释,仔细看一下很容易就看懂。

LRU在Redis中的实现

1.近似LRU算法 Redis使用的是近似LRU算法,它跟常规的LRU算法还不太一样。近似LRU算法通过随机采样法淘汰数据,每次随机出5(默认)个key,从里面淘汰掉最近最少使用的key。

可以通过maxmemory-samples参数修改采样数量:例:maxmemory-samples 10 maxmenory-samples配置的越大,淘汰的结果越接近于严格的LRU算法

Redis为了实现近似LRU算法,给每个key增加了一个额外增加了一个24bit的字段,用来存储该key最后一次被访问的时间。

2.Redis3.0对近似LRU的优化 Redis3.0对近似LRU算法进行了一些优化。新算法会维护一个候选池(大小为16),池中的数据根据访问时间进行排序,第一次随机选取的key都会放入池中,随后每次随机选取的key只有在访问时间小于池中最小的时间才会放入池中,直到候选池被放满。当放满后,如果有新的key需要放入,则将池中最后访问时间最大(最近被访问)的移除。

当需要淘汰的时候,则直接从池中选取最近访问时间最小(最久没被访问)的key淘汰掉就行。

3.LRU算法的对比 我们可以通过一个实验对比各LRU算法的准确率,先往Redis里面添加一定数量的数据n,使Redis可用内存用完,再往Redis里面添加n/2的新数据,这个时候就需要淘汰掉一部分的数据,如果按照严格的LRU算法,应该淘汰掉的是最先加入的n/2的数据。生成如下各LRU算法的对比图

Redis中如何使用内存淘汰策略

你可以看到图中有三种不同颜色的点:

1.浅灰色是被淘汰的数据

2.灰色是没有被淘汰掉的老数据

3.绿色是新加入的数据

我们能看到Redis3.0采样数是10生成的图最接近于严格的LRU。而同样使用5个采样数,Redis3.0也要优于Redis2.8。

LFU算法

LFU算法是Redis4.0里面新加的一种淘汰策略。它的全称是Least Frequently Used,它的核心思想是根据key的最近被访问的频率进行淘汰,很少被访问的优先被淘汰,被访问的多的则被留下来。LFU算法能更好的表示一个key被访问的热度。假如你使用的是LRU算法,一个key很久没有被访问到,只刚刚是偶尔被访问了一次,那么它就被认为是热点数据,不会被淘汰,而有些key将来是很有可能被访问到的则被淘汰了。如果使用LFU算法则不会出现这种情况,因为使用一次并不会使一个key成为热点数据。LFU一共有两种策略:

&bull;volatile-lfu:在设置了过期时间的key中使用LFU算法淘汰key

&bull;allkeys-lfu:在所有的key中使用LFU算法淘汰数据

设置使用这两种淘汰策略跟前面讲的一样,不过要注意的一点是这两周策略只能在Redis4.0及以上设置,如果在Redis4.0以下设置会报错

看完上述内容是否对您有帮助呢?如果还想对相关知识有进一步的了解或阅读更多相关文章,请关注亿速云行业资讯频道,感谢您对亿速云的支持。

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Redis中如何使用内存淘汰策略

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Redis的过期策略和内存淘汰策略

文章前言提到内存管理,我们就需要考虑Redis的内存过期策略和内存淘汰机制。该文章便从这两方面入手,分享一些在Redis内存方面相关的基础知识。文章中使用的示例版本为Redis5.0版本。内存过期策略内存过期策略主要的作用就是,在缓存过期之后,能够及时的将失效
Redis的过期策略和内存淘汰策略
2020-12-25

Redis内存淘汰策略有哪些

Least Recently Used (LRU):最少使用算法,根据键的最近使用时间来淘汰。First In First Out (FIFO):先进先出算法,根据键的插入时间来淘汰。Random:随机算法,随机选择一个键进行淘汰。L
Redis内存淘汰策略有哪些
2024-04-09

redis的内存淘汰策略有哪些

redis 提供了多项内存淘汰策略,以控制在内存不足情况下数据的处理方式。这些策略包括:noeviction:禁用内存淘汰,确保数据不会丢失。volatile-lru:淘汰最久未使用的已设置过期时间的键。volatile-ttl:淘汰过期时
redis的内存淘汰策略有哪些
2024-04-19

深入理解Redis内存淘汰策略

目录一、内存回收二、设置内存三、内存淘OMrIioOBX汰策略四、LRU4.1 LRU算法4.2 redis中的LRU算法五、LFU一、内存回收长时间不使用的缓存降低IO性能物理内存不够很多人了解了Redis的好处之后,于是把任何数据
2022-07-05

关于Redis的内存淘汰策略详解

目录一、什么是内存淘汰?二、Redis 内存上限三、Redis 内存淘汰策略四、内存淘汰的具体工作步骤五、LRU 算法及在 Redis 中的改进5.1 LRU 算法5.2 Redis 中的 LRU 算法六、LFU一、什么是内存淘汰?如果在
2023-05-19

Redis 过期删除策略和内存淘汰机制

Redis 设置过期时间Redis 有四个不同的命令可以用于设置键的生存时间(键可以存在多久)或过期时间(键什么时候会被删除):EXPIRE ——将键 key 的生存时间设置为 ttl 秒。PEXPIRE ——将键 key 的生存时间设置为 ttl 毫秒
Redis 过期删除策略和内存淘汰机制
2015-02-08

Redis 的内存淘汰策略和过期删除策略的区别

目录前言过期删除策略如何设置过期时间?如何判定 key 已过期了?过期删除策略有哪些?Redis 过期删除策略是什么?内存淘汰策略如何设置 Redis 最大运行内存?Redis 内存淘汰策略有哪些?LRU 算法和 LFU 算法有什么区别?总
2022-07-04

Redis的过期策略和内存淘汰策略最全总结与分析

文章前言提到内存管理,我们就需要考虑Redis的内存过期策略和内存淘汰机制。该文章便从这两方面入手,分享一些在Redis内存方面相关的基础知识。文章中使用的示例版本为Redis5.0版本。内存过期策略内存过期策略主要的作用就是,在缓存过期之后,能够及时的将失效
Redis的过期策略和内存淘汰策略最全总结与分析
2016-07-21

Redis的内存淘汰策略和过期删除策略有什么区别

本文小编为大家详细介绍“Redis的内存淘汰策略和过期删除策略有什么区别”,内容详细,步骤清晰,细节处理妥当,希望这篇“Redis的内存淘汰策略和过期删除策略有什么区别”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧
2023-07-02

Redis过期键与内存淘汰策略深入分析讲解

目录一、Redis数据库的组织方式1.1 redisServer结构定义1.2 redisDb 结构定义1.3 redisdb初始化二、过期键2.1 设置键的过期时间2.2 过期键的判定2.3 过期键的删除策略2.3.1 惰性删除的实现2.
2022-11-28

Redis中的过期删除策略和内存淘汰机制是什么

这篇文章主要讲解了“Redis中的过期删除策略和内存淘汰机制是什么”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Redis中的过期删除策略和内存淘汰机制是什么”吧!Redis 中 key 的
2023-06-29

如何理解Redis内存回收策略

今天就跟大家聊聊有关如何理解Redis内存回收策略,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。概述Redis也会因为内存不足而产生错误 , 也可能因为回收过久而导致系统长期的停顿,
2023-06-21

编程热搜

目录