我的编程空间,编程开发者的网络收藏夹
学习永远不晚

OpenCV实现图像去噪算法的步骤详解

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

OpenCV实现图像去噪算法的步骤详解

一、函数参考

1、Primal-dual算法

Primal-dual algorithm是一种用于解决特殊类型的变分问题的算法(即找到一个函数来最小化一些泛函)。

特别是由于图像去噪可以看作是变分问题,因此可以使用原始对偶算法进行去噪,这正是该算法所实现的。

cv::denoise_TVL1 (const std::vector< Mat > &observations, Mat &result, double lambda=1.0, int niters=30)
observations该数组应包含要恢复的图像的一个或多个噪声版本。
result这里将存储去噪图像。 无需预先分配存储空间,必要时会自动分配。
lambda对应于上述公式中的 λ。 当它被放大时,平滑(模糊)的图像比细节(但可能有更多噪点)的图像更受欢迎。 粗略地说,随着它变小,结果会更加模糊,但会去除更多的异常值。
niters算法将运行的迭代次数。 当然,越多的迭代越好,但是这个说法很难量化细化,所以就使用默认值,如果结果不好就增加它。

2、非局部均值去噪算法

使用非局部均值去噪算法,该方法基于一个简单的原理:将像素的颜色替换为相似像素颜色的平均值。 但是与给定像素最相似的像素根本没有理由靠近。 因此,扫描图像的大部分以寻找真正类似于想要去噪的像素的所有像素是合法的。执行图像去噪,并进行了多种计算优化。 噪声预期为高斯白噪声。

cv::cuda::fastNlMeansDenoising (InputArray class="lazy" data-src, OutputArray dst, float h, int search_window=21, int block_size=7, Stream &stream=Stream::Null())
cv::fastNlMeansDenoising (InputArray class="lazy" data-src, OutputArray dst, float h=3, int templateWindowSize=7, int searchWindowSize=21)
cv::fastNlMeansDenoising (InputArray class="lazy" data-src, OutputArray dst, const std::vector< float > &h, int templateWindowSize=7, int searchWindowSize=21, int

针对彩色图像的 fastNlMeansDenoising 函数。

cv::cuda::fastNlMeansDenoisingColored (InputArray class="lazy" data-src, OutputArray dst, float h_luminance, float photo_render, int search_window=21, int block_size=7, Stream &stream=Stream::Null()) 
cv::fastNlMeansDenoisingColored (InputArray class="lazy" data-src, OutputArray dst, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)

针对图像序列的 fastNlMeansDenoising 函数。

cv::fastNlMeansDenoisingColoredMulti (InputArrayOfArrays class="lazy" data-srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, float hColor=3, int templateWindowSize=7, int searchWindowSize=21)
 
cv::fastNlMeansDenoisingMulti (InputArrayOfArrays class="lazy" data-srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, float h=3, int templateWindowSize=7, int searchWindowSize=21)
 
cv::fastNlMeansDenoisingMulti (InputArrayOfArrays class="lazy" data-srcImgs, OutputArray dst, int imgToDenoiseIndex, int temporalWindowSize, const std::vector< float > &h, int templateWindowSize=7, int searchWindowSize=21, int normType=NORM_L2)

执行纯非局部方法去噪,没有任何简化,因此速度不快。

cv::cuda::nonLocalMeans (InputArray class="lazy" data-src, OutputArray dst, float h, int search_window=21, int block_size=7, int borderMode=BORDER_DEFAULT, Stream &stream=Stream::Null())

三、OpenCV源码

1、源码路径

opencv\modules\photo\class="lazy" data-src\denoise_tvl1.cpp

2、源码代码

#include "precomp.hpp"
#include <vector>
#include <algorithm>
 
#define ABSCLIP(val,threshold) MIN(MAX((val),-(threshold)),(threshold))
 
namespace cv{
    class AddFloatToCharScaled{
        public:
            AddFloatToCharScaled(double scale):_scale(scale){}
            inline double operator()(double a,uchar b){
                return a+_scale*((double)b);
            }
        private:
            double _scale;
    };
    using std::transform;
    void denoise_TVL1(const std::vector<Mat>& observations,Mat& result, double lambda, int niters){
        CV_Assert(observations.size()>0 && niters>0 && lambda>0);
        const double L2 = 8.0, tau = 0.02, sigma = 1./(L2*tau), theta = 1.0;
        double clambda = (double)lambda;
        double s=0;
        const int workdepth = CV_64F;
        int i, x, y, rows=observations[0].rows, cols=observations[0].cols,count;
        for(i=1;i<(int)observations.size();i++){
            CV_Assert(observations[i].rows==rows && observations[i].cols==cols);
        }
        Mat X, P = Mat::zeros(rows, cols, CV_MAKETYPE(workdepth, 2));
        observations[0].convertTo(X, workdepth, 1./255);
        std::vector< Mat_<double> > Rs(observations.size());
        for(count=0;count<(int)Rs.size();count++){
            Rs[count]=Mat::zeros(rows,cols,workdepth);
        }
        for( i = 0; i < niters; i++ )
        {
            double currsigma = i == 0 ? 1 + sigma : sigma;
            // P_ = P + sigma*nabla(X)
            // P(x,y) = P_(x,y)/max(||P(x,y)||,1)
            for( y = 0; y < rows; y++ )
            {
                const double* x_curr = X.ptr<double>(y);
                const double* x_next = X.ptr<double>(std::min(y+1, rows-1));
                Point2d* p_curr = P.ptr<Point2d>(y);
                double dx, dy, m;
                for( x = 0; x < cols-1; x++ )
                {
                    dx = (x_curr[x+1] - x_curr[x])*currsigma + p_curr[x].x;
                    dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
                    m = 1.0/std::max(std::sqrt(dx*dx + dy*dy), 1.0);
                    p_curr[x].x = dx*m;
                    p_curr[x].y = dy*m;
                }
                dy = (x_next[x] - x_curr[x])*currsigma + p_curr[x].y;
                m = 1.0/std::max(std::abs(dy), 1.0);
                p_curr[x].x = 0.0;
                p_curr[x].y = dy*m;
            }
            //Rs = clip(Rs + sigma*(X-imgs), -clambda, clambda)
            for(count=0;count<(int)Rs.size();count++){
                transform<MatIterator_<double>,MatConstIterator_<uchar>,MatIterator_<double>,AddFloatToCharScaled>(
                        Rs[count].begin(),Rs[count].end(),observations[count].begin<uchar>(),
                        Rs[count].begin(),AddFloatToCharScaled(-sigma/255.0));
                Rs[count]+=sigma*X;
                min(Rs[count],clambda,Rs[count]);
                max(Rs[count],-clambda,Rs[count]);
            }
            for( y = 0; y < rows; y++ )
            {
                double* x_curr = X.ptr<double>(y);
                const Point2d* p_curr = P.ptr<Point2d>(y);
                const Point2d* p_prev = P.ptr<Point2d>(std::max(y - 1, 0));
                // X1 = X + tau*(-nablaT(P))
                x = 0;
                s=0.0;
                for(count=0;count<(int)Rs.size();count++){
                    s=s+Rs[count](y,x);
                }
                double x_new = x_curr[x] + tau*(p_curr[x].y - p_prev[x].y)-tau*s;
                    // X = X2 + theta*(X2 - X)
                x_curr[x] = x_new + theta*(x_new - x_curr[x]);
                for(x = 1; x < cols; x++ )
                {
                    s=0.0;
                    for(count=0;count<(int)Rs.size();count++){
                        s+=Rs[count](y,x);
                    }
                        // X1 = X + tau*(-nablaT(P))
                    x_new = x_curr[x] + tau*(p_curr[x].x - p_curr[x-1].x + p_curr[x].y - p_prev[x].y)-tau*s;
                        // X = X2 + theta*(X2 - X)
                    x_curr[x] = x_new + theta*(x_new - x_curr[x]);
                }
            }
        }
        result.create(X.rows,X.cols,CV_8U);
        X.convertTo(result, CV_8U, 255);
    }
}

四、效果图像示例

原图

denoise_TVL1 

fastNlMeansDenoising

到此这篇关于OpenCV实现图像去噪算法的步骤详解的文章就介绍到这了,更多相关OpenCV图像去噪算法内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

OpenCV实现图像去噪算法的步骤详解

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

OpenCV如何实现图像去噪算法

今天小编给大家分享一下OpenCV如何实现图像去噪算法的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。一、函数参考1、Prim
2023-07-02

OpenCV学习之图像加噪与滤波的实现详解

这篇文章主要为大家详细介绍了OpenCV中图像的加噪与滤波操作的相关资料,文中的示例代码简洁易懂,具有一定的借鉴价值,需要的可以参考一下
2023-02-16

Python实现二值掩膜影像去噪与边缘强化方法详解

这篇文章主要介绍了Python实现二值掩膜影像去噪与边缘强化方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习吧
2023-01-28

Python+OpenCV实现图像基本操作的示例详解

这篇文章主要为大家详细介绍了Python通过OpenCV实现图像的一些基本处理操作的方法,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的可以学习一下
2023-05-16

OpenCV基于分水岭算法的图像分割怎么实现

本文小编为大家详细介绍“OpenCV基于分水岭算法的图像分割怎么实现”,内容详细,步骤清晰,细节处理妥当,希望这篇“OpenCV基于分水岭算法的图像分割怎么实现”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。1.
2023-07-05

学习Python中A*算法实现的详细步骤

以此加权图为例,用Python实现A*算法。加权图中的节点用粉红色圆圈表示,并且给出了沿节点的路径的权重。节点上方的数字代表节点的启发式值。首先为算法创建类。一个用于存储与起始节点的距离,另一个用于存储父节点。并将它们初始化为0,以及起始节
学习Python中A*算法实现的详细步骤
2024-01-23

Python编程中归并排序算法的实现步骤详解

基本思想:归并排序是一种典型的分治思想,把一个无序列表一分为二,对每个子序列再一分为二,继续下去,直到无法再进行划分为止。然后,就开始合并的过程,对每个子序列和另外一个子序列的元素进行比较,依次把小元素放入结果序列中进行合并,最终完成归并排
2022-06-04

Python实现K-means聚类算法并可视化生成动图步骤详解

K-means算法介绍 简单来说,K-means算法是一种无监督算法,不需要事先对数据集打上标签,即ground-truth,也可以对数据集进行分类,并且可以指定类别数目 牧师-村民模型 K-means 有一个著名的解释:牧师—村民模型:有
2022-06-02

ASP.NET实现图书管理系统的步骤详解

一、数据库添加 1.用户信息 2.图书信息表3.图书借阅信息表二、版本页面 vs2010+sqlserver2008三、实现功能 1. 用户注册登录2. 两种身份:管理员和读者3. 读者能够注册自己的账号和密码还有填写自己的个人信息4.
2022-06-07

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录