我的编程空间,编程开发者的网络收藏夹
学习永远不晚

python怎么使用Evidently创建机器学习模型仪表板

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

python怎么使用Evidently创建机器学习模型仪表板

这篇文章主要讲解了“python怎么使用Evidently创建机器学习模型仪表板”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么使用Evidently创建机器学习模型仪表板”吧!

解释机器学习模型是一个困难的过程,因为通常大多数模型都是一个黑匣子,我们不知道模型内部发生了什么。创建不同类型的可视化有助于理解模型是如何执行的,但是很少有库可以用来解释模型是如何工作的。

Evidently 是一个开源 Python 库,用于创建交互式可视化报告、仪表板和 JSON 配置文件,有助于在验证和预测期间分析机器学习模型。它可以创建 6 种不同类型的报告,这些报告与数据漂移、分类或回归的模型性能等有关。

1、安装包

使用 pip 软件包管理器安装,运行

$ pip install evidently

该工具允许在 Jupyter notebook 中以及作为单独的HTML文件构建交互式报告。如果你只想将交互式报告生成为HTML文件或导出为JSON配置文件,则安装现已完成。

为了能够在 Jupyter notebook 中构建交互式报告,我们使用Jupyter nbextension。如果想在 Jupyter notebook 中创建报告,那么在安装之后,您应该在 terminal 中运行以下两个命令。

要安装 jupyter Nbextion,请运行:

$ jupyter nbextension install --sys-prefix --symlink --overwrite --py evidently

运行

jupyter nbextension enable evidently --py --sys-prefix

有一点需要注意:安装后单次运行就足够了。无需每次都重复最后两个命令。

2、导入所需的库

在这一步中,我们将导入创建ML模型所需的库。我们还将导入用于创建用于分析模型性能的仪表板的库。此外,我们将导入 pandas 以加载数据集。

import pandas as pdimport numpy as npfrom sklearn.ensemble import RandomForestRegressorfrom evidently.dashboard import Dashboardfrom evidently.tabs import RegressionPerformanceTabfrom evidently.model_profile import Profilefrom evidently.profile_sections import RegressionPerformanceProfileSection

3、加载数据集

在这一步中,我们将加载数据并将其分离为参考数据和预测数据。

raw_data = pd.read_csv('/content/day.csv', header = 0, sep = ',', parse_dates=['dteday'])ref_data = raw_data[:120]prod_data = raw_data[120:150]ref_data.head()

python怎么使用Evidently创建机器学习模型仪表板

4、创建模型

在这一步中,我们将创建机器学习模型,对于这个特定的数据集,我们将使用随机森林回归模型。

target = 'cnt'datetime = 'dteday'numerical_features = ['mnth', 'temp', 'atemp', 'hum', 'windspeed']categorical_features = ['season', 'holiday', 'weekday', 'workingday', 'weathersit',]features = numerical_features + categorical_featuresmodel = RandomForestRegressor(random_state = 0)model.fit(ref_data[features], ref_data[target])ref_data['prediction']  = model.predict(ref_data[features])prod_data['prediction'] = model.predict(prod_data[features])

5、创建仪表板

在这一步中,我们将创建仪表板来解释模型性能并分析模型的不同属性,如 MAE、MAPE、误差分布等。

column_mapping = {}column_mapping['target'] = targetcolumn_mapping['prediction'] = 'prediction'column_mapping['datetime'] = datetimecolumn_mapping['numerical_features'] = numerical_featurescolumn_mapping['categorical_features'] = categorical_featuresdashboard = Dashboard(tabs=[RegressionPerformanceTab])dashboard .calculate(ref_data, prod_data, column_mapping=column_mapping)dashboard.save('bike_sharing_demand_model_perfomance.html')

python怎么使用Evidently创建机器学习模型仪表板

在上图中,可以清楚地看到显示模型性能的报告,可以使用上述代码下载并创建的 HTML 报告。

6、可用报告类型

1)数据漂移

检测特征分布的变化

python怎么使用Evidently创建机器学习模型仪表板

2)数值目标漂移

检测数值目标和特征行为的变化。

python怎么使用Evidently创建机器学习模型仪表板

3)分类目标漂移

检测分类目标和特征行为的变化

python怎么使用Evidently创建机器学习模型仪表板

4)回归模型性能

分析回归模型的性能和模型误差

python怎么使用Evidently创建机器学习模型仪表板

5)分类模型性能

分析分类模型的性能和错误。适用于二元和多类模型

python怎么使用Evidently创建机器学习模型仪表板

6)概率分类模型性能

分析概率分类模型的性能、模型校准的质量和模型错误。适用于二元和多类模型。

python怎么使用Evidently创建机器学习模型仪表板

感谢各位的阅读,以上就是“python怎么使用Evidently创建机器学习模型仪表板”的内容了,经过本文的学习后,相信大家对python怎么使用Evidently创建机器学习模型仪表板这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是编程网,小编将为大家推送更多相关知识点的文章,欢迎关注!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

python怎么使用Evidently创建机器学习模型仪表板

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python怎么使用Evidently创建机器学习模型仪表板

这篇文章主要讲解了“python怎么使用Evidently创建机器学习模型仪表板”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“python怎么使用Evidently创建机器学习模型仪表板”吧
2023-06-25

Python中怎么创建线性回归机器学习模型

Python中怎么创建线性回归机器学习模型,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。线性回归机器学习模型1.要使用的数据集由于线性回归是我们在本文中学习的第一个机器学习模型
2023-06-16

机器学习模型解释工具SHAP怎么使用

SHAP(SHapley Additive exPlanations)是一种机器学习模型解释工具,它可以解释模型的预测结果,帮助理解模型是如何做出预测的。以下是使用SHAP的一般步骤:安装SHAP库:可以通过pip安装shap库,如:pip
2023-10-21

C++技术中的机器学习:使用C++构建机器学习模型的步骤是什么?

c++++ 是构建机器学习模型的理想选择。构建模型的步骤包括:数据收集和预处理、模型选择、模型训练、模型评估和模型部署。实战案例演示了使用 mlpack 库构建线性回归模型的过程,包括数据加载、模型训练、保存、加载和预测。C++ 技术中的机
C++技术中的机器学习:使用C++构建机器学习模型的步骤是什么?
2024-05-12

Gradio机器学习模型快速部署工具quickstart怎么使用

本文小编为大家详细介绍“Gradio机器学习模型快速部署工具quickstart怎么使用”,内容详细,步骤清晰,细节处理妥当,希望这篇“Gradio机器学习模型快速部署工具quickstart怎么使用”文章能帮助大家解决疑惑,下面跟着小编的
2023-07-05

怎么使用R语言进行机器学习模型训练和评估

在R语言中,可以使用各种机器学习库和包来进行模型训练和评估。以下是一个简单的步骤来使用R语言进行机器学习模型训练和评估的示例:准备数据:首先加载数据集,将数据集分为训练集和测试集。#加载数据data <- read.csv("data.c
怎么使用R语言进行机器学习模型训练和评估
2024-03-04

使用Python部署机器学习模型的10个实践经验分别怎么样的

今天就跟大家聊聊有关使用Python部署机器学习模型的10个实践经验分别怎么样的,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。有时候,作为数据科学家,我们会忘记公司付钱让我们干什么。
2023-06-16

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录