我的编程空间,编程开发者的网络收藏夹
学习永远不晚

利用Java实现网站聚合工具

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

利用Java实现网站聚合工具

互联网上有数以万亿计的网站,每个网站大都具有一定的功能。搜索引擎虽然对互联网上的部分网站建立了索引,但是其作为一个大而全的搜索系统,无法很好的定位到一些特殊的需求,基于这样的背景,我尝试了写了一个网站数据聚合的程序。现在将原理和实现代码分享给大家。

原理

可以把互联网上的网站看做一张巨大的连通图,不同的网站处于不同的连通块中,然后以广度优先算法遍历这个连通块,就能找到所有的网站域名,利用广度优先算法遍历该连通块的结构可以抽象为:

然后,我们对该网站的返回内容进行分词,剔除无意义的词语和标点符号,就得出该网站首页的关键词排序,我们可以取词频在(10,50)区间范围内的为关键词,然后将这些关键词作为网站主题,把网站的信息放到以该词为名字的markdown文件中备用。

同理,我们也对该网站返回内容的title部分进行分词,因为title是网站开发者对网站功能的浓缩,也比较重要,同理,也将这些关键词作为网站主题,把网站的信息放到以该词为名字的markdown文件中备用。

最后,我们只需要从这些文件中人工做筛选,或者以这些数据放到elasticsearch中,做关键词搜索引擎即可。以达到想用的时候随时去拿的目的。​

不过,当你遍历连通块没有收敛时,得到的数据还是很少的,某些分类往往只有一两个网站。

实现代码

页面下载

页面下载我使用的是httpClient,前期考虑用playwrite来做,但是两者性能差距太大,后者效率太低了,所以舍弃了部分准确性(即web2.0技术的网站,前者无法拿到数据),所以准确的说我实现的仅仅是web1.0的网站分类搜索引擎的页面下载功能。

public SendReq.ResBody doRequest(String url, String method, Map<String, Object> params) {
    String urlTrue = url;
    SendReq.ResBody resBody = SendReq.sendReq(urlTrue, method, params, defaultHeaders());
    return resBody;
}

其中,SendReq是我封装的一个httpClient的类,只是实现了一个页面下载的功能,你可以替换为RestTemplate或者别的发起http(s)请求的方法。​

解析返回值中的所有链接

因为是连通块遍历,那么定义的连通网站就是该网站首页里面所有的外链的域名所在的站,所以我们需要提取链接,直接使用正则表达式提取即可。

public static List<String> getUrls(String htmlText) {
    Pattern pattern = Pattern.compile("(http|https):\\/\\/[A-Za-z0-9_\\-\\+.:?&@=\\/%#,;]*");
    Matcher matcher = pattern.matcher(htmlText);
    Set<String> ans = new HashSet<>();
    while (matcher.find()){
        ans.add(DomainUtils.getDomainWithCompleteDomain(matcher.group()));
    }
    return new ArrayList<>(ans);
}

解析返回值中的title

title是网站开发者对网站功能的浓缩,所以很有必要将title解析出来做进一步处理

public static String getTitle(String htmlText){
    Pattern pattern = Pattern.compile("(?<=title\\>).*(?=</title)");
    Matcher matcher = pattern.matcher(htmlText);
    Set<String> ans = new HashSet<>();
    while (matcher.find()){
        return matcher.group();
    }
    return "";
}

去除返回值中的标签

因为后续步骤需要对网站返回值进行分词,所以需要对页面中的标签和代码进行去除。

public static String getContent(String html) {
    String ans = "";
    try {
        html = StringEscapeUtils.unescapeHtml4(html);
        html = delHTMLTag(html);
        html = htmlTextFormat(html);
        return html;
    } catch (Exception e) {
        e.printStackTrace();
    }
    return ans;
}

public static String delHTMLTag(String htmlStr) {
    String regEx_script = "<script[^>]*?>[\\s\\S]*?<\\/script>"; //定义script的正则表达式
    String regEx_style = "<style[^>]*?>[\\s\\S]*?<\\/style>"; //定义style的正则表达式
    String regEx_html = "<[^>]+>"; //定义HTML标签的正则表达式

    Pattern p_script = Pattern.compile(regEx_script, Pattern.CASE_INSENSITIVE);
    Matcher m_script = p_script.matcher(htmlStr);
    htmlStr = m_script.replaceAll(""); //过滤script标签

    Pattern p_style = Pattern.compile(regEx_style, Pattern.CASE_INSENSITIVE);
    Matcher m_style = p_style.matcher(htmlStr);
    htmlStr = m_style.replaceAll(""); //过滤style标签

    Pattern p_html = Pattern.compile(regEx_html, Pattern.CASE_INSENSITIVE);
    Matcher m_html = p_html.matcher(htmlStr);
    htmlStr = m_html.replaceAll(""); //过滤html标签

    return htmlStr.trim();
}

分词

分词算法使用之前讲NLP入门的文章里面提到的hanlp即可

private static Pattern ignoreWords = Pattern.compile("[,.0-9_\\- ,、:。;;\\]\\[\\/!()【】*?“”()+:|\"%~<>——]+");

public static Set<Word> separateWordAndReturnUnit(String text) {
    Segment segment = HanLP.newSegment().enableOffset(true);
    Set<Word> detectorUnits = new HashSet<>();
    Map<Integer, Word> detectorUnitMap = new HashMap<>();
    List<Term> terms = segment.seg(text);
    for (Term term : terms) {
        Matcher matcher = ignoreWords.matcher(term.word);
        if (!matcher.find() && term.word.length() > 1 && !term.word.contains("�")) {
            Integer hashCode = term.word.hashCode();
            Word detectorUnit = detectorUnitMap.get(hashCode);
            if (Objects.nonNull(detectorUnit)) {
                detectorUnit.setCount(detectorUnit.getCount() + 1);
            } else {
                detectorUnit = new Word();
                detectorUnit.setWord(term.word.trim());
                detectorUnit.setCount(1);
                detectorUnitMap.put(hashCode, detectorUnit);
                detectorUnits.add(detectorUnit);
            }
        }
    }
    return detectorUnits;
}

获取分词结果的数量前十个

这里为了去掉词频过多的词的干扰,所以只取词频小于50的词的前十

public static List<String> print2List(List<Word> tmp,int cnt){
    PriorityQueue<Word> words = new PriorityQueue<>();
    List<String> ans = new ArrayList<>();
    for (Word word : tmp) {
        words.add(word);
    }
    int count = 0;
    while (!words.isEmpty()) {
        Word word = words.poll();
        if (word.getCount()<50){
            ans.add(word.getWord() + " " + word.getCount());
            count ++;
            if (count >= cnt){
                break;
            }
        }
    }
    return ans;
}

方法就是放到优先队列中一个一个取出来,优先队列是使用大顶堆实现的,所以取出来一定是有序的。如果想了解大顶堆的朋友,可以看我前面的文章。
值得注意的是,优先队列中放入的类必须是可排序的,所以,这里的Word也是可排序的,简化的代码如下:

public class Word implements Comparable{
    private String word;
    private Integer count = 0;

    ... ...

    @Override
    public int compareTo(Object o) {
        if (this.count >= ((Word)o).count){
            return -1;
        }else {
            return 1;
        }
    }
}

好了,现在准备工作已经做好了。下面开始实现程序逻辑部分。

遍历网站连通块

利用广度优先遍历网站连通块,之前的文章有专门讲利用队列写广度优先遍历。现在就使用该方法。

public void doTask() {
    String root = "http://" + this.domain + "/";
    Queue<String> urls = new LinkedList<>();
    urls.add(root);
    Set<String> tmpDomains = new HashSet<>();
    tmpDomains.add(DomainUtils.getDomainWithCompleteDomain(root));
    while (!urls.isEmpty()) {
        String url = urls.poll();
        SendReq.ResBody html = doRequest(url, "GET", new HashMap<>());
        System.out.println("当前的请求为 " + url + " 队列的大小为 " + urls.size() + " 结果为" + html.getCode());
        if (html.getCode().equals(0)) {
            ignoreSet.add(DomainUtils.getDomainWithCompleteDomain(url));
            try {
                GenerateFile.createFile2("moneyframework/generate/ignore", "demo.txt", ignoreSet.toString());
            } catch (IOException e) {
                e.printStackTrace();
            }
            continue;
        }

        OnePage onePage = new OnePage();
        onePage.setUrl(url);
        onePage.setDomain(DomainUtils.getDomainWithCompleteDomain(url));
        onePage.setCode(html.getCode());
        String title = HtmlUtil.getTitle(html.getResponce()).trim();
        if (!StringUtils.hasText(title) || title.length() > 100 || title.contains("�")) continue;
        onePage.setTitle(title);
        String content = HtmlUtil.getContent(html.getResponce());
        Set<Word> words = Nlp.separateWordAndReturnUnit(content);
        List<String> wordStr = Nlp.print2List(new ArrayList<>(words), 10);
        handleWord(wordStr, DomainUtils.getDomainWithCompleteDomain(url), title);
        onePage.setContent(wordStr.toString());
        if (html.getCode().equals(200)) {
            List<String> domains = HtmlUtil.getUrls(html.getResponce());
            for (String domain : domains) {
                int flag = 0;
                for (String i : ignoreSet) {
                    if (domain.endsWith(i)) {
                        flag = 1;
                        break;
                    }
                }
                if (flag == 1) continue;
                if (StringUtils.hasText(domain.trim())) {
                    if (!tmpDomains.contains(domain)) {
                        tmpDomains.add(domain);
                        urls.add("http://" + domain + "/");
                    }
                }
            }
        }
    }
}

调用测试

@Service
public class Task {

    @PostConstruct
    public void init(){
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true){
                    try {
                        HttpClientCrawl clientCrawl = new HttpClientCrawl("http://www.mengwa.store/");
                        clientCrawl.doTask();
                    }catch (Exception e){
                        e.printStackTrace();
                    }
                }
            }
        }).start();
    }
}

大家也可以用自己的个人博客作为起点试一下,看下自己在哪个连通块里面。

以上就是利用Java实现网站聚合工具的详细内容,更多关于Java网站聚合的资料请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

利用Java实现网站聚合工具

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

怎么用Java实现网站聚合工具

这篇文章主要介绍“怎么用Java实现网站聚合工具”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么用Java实现网站聚合工具”文章能帮助大家解决问题。原理可以把互联网上的网站看做一张巨大的连通图,不
2023-06-29

Python+tkinter实现网站下载工具

这篇文章主要为大家详细介绍了如何利用Python+tkinter实现网站下载工具,实现所有数据一键获取,文中的示例代码讲解详细,感兴趣的可以了解一下
2023-03-07

利用Java怎么实现一个超时工具类

本文章向大家介绍利用Java怎么实现一个超时工具类的基本知识点总结和需要注意事项,具有一定的参考价值,需要的朋友可以参考一下。Java的特点有哪些Java的特点有哪些1.Java语言作为静态面向对象编程语言的代表,实现了面向对象理论,允许程
2023-06-06

Java利用Reflect实现封装Excel导出工具类

这篇文章主要为大家详细介绍了Java如何利用Reflect实现封装Excel导出工具类,文中的实现方法讲解详细,具有一定的借鉴价值,需要的可以参考一下
2022-11-13

怎么使用Python+tkinter实现网站下载工具

今天小编给大家分享一下怎么使用Python+tkinter实现网站下载工具的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。开发
2023-07-05

如何利用聚合函数实现复杂统计

使用聚合函数可以实现各种复杂的统计分析,下面是一些常见的例子:计算平均值:使用聚合函数AVG()可以计算一列数据的平均值。计算总和:使用聚合函数SUM()可以计算一列数据的总和。计算最大值和最小值:使用聚合函数MAX()和MIN()可以计算
如何利用聚合函数实现复杂统计
2024-08-03

利用Java工具类Hutool实现验证码校验功能

这篇文章主要介绍了利用Java工具类Hutool实现验证码校验功能,利用Hutool实现验证码校验,校验的Servlet与今天的第一篇是一样的,唯一就是验证码的生成是不一样的,利用Hutool生成验证码更快捷.需要的朋友可以参考下
2022-11-13

如何利用Python实现Picgo图床工具

这篇文章主要介绍了如何利用Python实现Picgo图床工具,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。一、PyPicGoPyPicGo 是一款图床工具,是PicGo是Py
2023-06-25

java利用Future实现多线程执行与结果聚合的代码怎么写

java利用Future实现多线程执行与结果聚合的代码怎么写,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴找到更简单易行的方法。场景网站智能问答场景,需要对多个分类查询,结果聚合展示由于每种分类
2023-06-22

Docker与Nginx结合实现网站灰度发布(如何利用Docker和Nginx实现网站的灰度发布?)

利用Docker和Nginx,可实现网站灰度发布。首先构建新旧版本容器镜像。部署旧版本,配置Nginx代理。随后部署新版本,修改Nginx配置路由部分流量。测试新版本,逐步增加流量。当新版本稳定后,完全切换。Docker灰度发布优势包括隔离性、可移植性、可扩展性和自动化。最佳实践包括谨慎监控、明确回滚策略、逐步增加流量和全面测试。
Docker与Nginx结合实现网站灰度发布(如何利用Docker和Nginx实现网站的灰度发布?)
2024-04-02

利用Python的PIL工具包实现图片比

PythonWare公司提供了免费的图像处理工具包PIL(Python Image Library),该软件包提供了基本的图像处理功能,本文介绍了使用PIL工具包中的Image模块进行比对的过程。                      
2023-01-31

springboot怎么利用@Aspect实现日志工具类

这篇文章主要介绍了springboot怎么利用@Aspect实现日志工具类的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇springboot怎么利用@Aspect实现日志工具类文章都会有所收获,下面我们一起来看
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录