我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python协程的实现方式有哪些

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python协程的实现方式有哪些

什么是协程

在 Python 中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。使用 yield 关键字挂起函数的执行,以及保存当前执行状态,是协程的特殊之处。因此,协程可视为一种特殊的生成器函数。当协程被挂起时,可以使用 send 方法来恢复其执行,并在恢复后返回一个值。

在 Python 3.4 以前,常使用 yield 关键字来实现协程,即称为“生成器协程”。在 Python 3.4 引入了 asyncio 模块后,可以使用 async/await 关键字来定义协程函数,称为“原生协程”。

协程相比于线程和进程,具有以下优点:

  • 轻量级:协程的上下文切换成本很小,可以在单线程内并发执行大量的协程。

  • 低延迟:协程的执行过程中,没有线程切换的开销,也没有加锁解锁的开销,可以更快地响应外部事件。

  • 高效性:协程的代码通常比多线程和多进程的代码更加简洁和可读,维护成本更低。

协程的使用场景包括网络编程、异步 I/O、数据流处理、高并发任务等。

生成器协程

在 Python 3 中,生成器协程(Generator Coroutine)是指使用生成器函数来实现的协程。生成器函数是一种特殊的函数,其返回一个生成器对象,可以通过 yield 语句暂停函数的执行,然后在下一次调用生成器对象的 「next」() 方法时继续执行。

下面给出一个简单的生成器协程的示例,其中包含一个生成器函数 coroutine 和一个简单的异步 I/O 操作:

import asyncio

def coroutine():
    print('Coroutine started')
    while True:
        result = yield
        print('Coroutine received:', result)

async def main():
    print('Main started')
    c = coroutine()
    next(c)
    c.send('Hello')
    await asyncio.sleep(1)
    c.send('World')
    print('Main finished')

asyncio.run(main())

结果输出:

[root@workhost k8s]# python3 test.py
Main started
Coroutine started
Coroutine received: Hello
Coroutine received: World
Main finished

来看一下,上面代码的执行过程:

  • main 函数开始执行,打印出 Main started。

  • 创建一个生成器对象 c,调用 next(c) 使其执行到第一个 yield 语句处暂停。

  • 使用 c.send('Hello') 恢复生成器函数的执行,并将 'Hello' 作为生成器函数的返回值。

  • 在等待1秒钟的过程中,main 函数暂停执行,等待事件循环发起下一次任务。

  • 在等待1秒钟后,使用 c.send('World') 继续执行生成器函数,并将 'World' 作为生成器函数的返回值。

  • main 函数恢复执行,打印出 Main finished。

通过使用生成器函数 coroutine,这段代码实现了一个简单的协程。生成器函数通过使用 yield 语句暂停函数的执行,然后可以通过 send 方法恢复函数的执行,并将值传递给生成器函数。通过这种方式,可以使用生成器函数实现异步并发。使用生成器函数接受异步 I/O 操作的结果,并将其打印出来,如示例所示。

原生协程

Python 3引入原生协程(Native Coroutine)作为一种新型协程类型。原生协程是通过使用 async/await 关键字来定义的,与生成器协程不同,它们可以像普通函数一样使用 return 语句返回值,而不是使用 yield 语句。

下面给出一个简单的原生协程示例,其中包含一个 async 关键字修饰的协程函数 coroutine 和一个简单的异步 I/O 操作:

import asyncio

async def coroutine():
    print('Coroutine started')
    await asyncio.sleep(1)
    print('Coroutine finished')

async def main():
    print('Main started')
    await coroutine()
    print('Main finished')

asyncio.run(main())

结果输出:

[root@workhost k8s]# python3 test.py
Main started
Coroutine started
Coroutine finished
Main finished

继续看一下执行过程:

  • main 函数开始执行,打印出 Main started。

  • 调用 coroutine 函数,将其作为一个协程对象运行。

  • 在 coroutine 函数中,打印出 Coroutine started。

  • 在 coroutine 函数中,使用 await asyncio.sleep(1) 暂停函数的执行,等待1秒钟。

  • 在1秒钟后,恢复 coroutine 函数的执行,并打印出 Coroutine finished。

  • main 函数恢复执行,打印出 Main finished。

在上面的代码中,使用 async 关键字定义了一个原生协程函数 coroutine,并在其中使用 await 关键字来暂停函数的执行,等待异步 I/O 操作的完成。使用原生协程可以编写并发异步代码,从而提高代码的效率和性能。

两种协程对比

Python 3 中,原生协程和生成器协程是不同的协程实现方式,它们分别具有独特的特点和适用场景。下面,通过对比它们的区别和优缺点,才可以更好地理解它们之间的异同,以便选择适合自己的协程实现方式,从而更好地编写高效、可维护的异步程序。

1.区别:

  • 定义方式不同:原生协程使用 async/await 关键字来定义,而生成器协程使用 yield 关键字来定义。

  • 返回方式不同:原生协程使用 return 语句来返回结果,而生成器协程使用 yield 语句来返回结果。

  • 调用方式不同:原生协程使用 await 关键字来调用,而生成器协程使用 yield from 或 yield 语句来调用。

  • 原生协程与生成器协程的实现方式不同,前者使用 asyncio 库,后者则是 Python 语言内置的特性。

2.优缺点:

原生协程的优点:

  • 代码简洁易懂:使用 async/await 关键字,可以编写出更简洁易懂的协程代码。

  • 性能更高:原生协程不需要创建生成器对象,也不需要通过 yield 语句来控制函数的执行流程,因此能够更加高效地处理异步操作。

  • 支持异步 I/O 和任务处理:原生协程可以支持异步 I/O 操作和并发任务处理,可以在处理异步操作时更加灵活。

原生协程的缺点:

  • 兼容性差:原生协程是 Python 3.5 版本之后才引入的新特性,因此在旧版本的 Python 中无法使用。

  • 异常处理不方便:原生协程在处理异常时比较麻烦,需要使用 try/except 语句来处理。

生成器协程的优点:

  • 兼容性好:生成器协程是 Python 2 和 Python 3 都支持的特性。

  • 可读性好:生成器协程使用 yield 关键字来实现,代码逻辑清晰易懂。

  • 异常处理方便:生成器协程在处理异常时比较方便,可以使用 try/except 语句来处理。

生成器协程的缺点:

  • 性能相对较低:生成器协程需要创建生成器对象,也需要通过 yield 语句来控制函数的执行流程,因此处理异步操作时性能相对较低。

  • 功能有限:生成器协程不能像原生协程一样支持异步 I/O 操作和任务处理。

实战案例

接下来,模拟一个场景,假设实现一个异步的批量处理任务的工具,使用原生协程来实现。

看下面代码:

import asyncio
import random

async def batch_process_task(tasks, batch_size=10):
    # 将任务列表划分为多个批次
    for i in range(0, len(tasks), batch_size):
        batch = tasks[i:i+batch_size]
        # 使用原生协程来异步处理每个批次的任务
        await asyncio.gather(*[process_task(task) for task in batch])

async def process_task(task):
    # 模拟任务处理过程
    await asyncio.sleep(random.uniform(0.5, 2.0))
    print("Task {} processed".format(task))

async def main():
    # 构造任务列表
    tasks = [i for i in range(1, 101)]
    # 并发处理批量任务
    await batch_process_task(tasks, batch_size=10)

if __name__ == '__main__':
    asyncio.run(main())

输出:

[root@workhost k8s]# python3 test.py
Task 9 processed
Task 10 processed
Task 1 processed
Task 8 processed
Task 6 processed
Task 4 processed
Task 3 processed
Task 2 processed
Task 5 processed
...
...

batch_process_task函数使用原生协程来处理每个批次的任务,而process_task函数则是处理每个任务的函数。在main函数中,任务列表会被构造,并使用batch_process_task函数来异步地处理批量任务。

以上就是Python协程的实现方式有哪些的详细内容,更多请关注编程网其它相关文章!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python协程的实现方式有哪些

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

python的gui编程实现方式有哪些

Python的GUI编程实现方式有以下几种:Tkinter:Tkinter是Python自带的GUI库,可以创建基于Tk的GUI应用程序。它是Python最常用的GUI编程工具之一,易于学习和使用。PyQT:PyQT是Python的QT绑定
2023-10-23

Python获取协程返回值的方式有哪些

这篇文章主要介绍“Python获取协程返回值的方式有哪些”,在日常操作中,相信很多人在Python获取协程返回值的方式有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python获取协程返回值的方式有哪些
2023-06-22

Python实现单例模式的方式有哪些

这篇“Python实现单例模式的方式有哪些”文章的知识点大部分人都不太理解,所以小编给大家总结了以下内容,内容详细,步骤清晰,具有一定的借鉴价值,希望大家阅读完这篇文章能有所收获,下面我们一起来看看这篇“Python实现单例模式的方式有哪些
2023-06-30

实现多线程的方式有哪些

本篇文章为大家展示了实现多线程的方式有哪些,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过这篇文章的详细介绍希望你能有所收获。实现多线程的方式:一,继承Thread方式:特点:多线程多实例,无法实现资源的共享。例子:package co
2023-05-31

Python实现计算AUC的方式有哪些

今天小编给大家分享一下Python实现计算AUC的方式有哪些的相关知识点,内容详细,逻辑清晰,相信大部分人都还太了解这方面的知识,所以分享这篇文章给大家参考一下,希望大家阅读完这篇文章后有所收获,下面我们一起来了解一下吧。介绍AUC(Are
2023-07-02

Python协程的四种实现方式总结

今天继续给大家介绍Python关知识,本文主要内容是Python协程的四种实现方式。文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下
2023-01-14

Python协程的2种实现方式分享

在 Python 中,协程(Coroutine)是一种轻量级的并发编程方式,可以通过协作式多任务来实现高效的并发执行。本文主要介绍了Python实现协程的2种方式,希望对大家有所帮助
2023-05-18

c++实现多线程的方式有哪些

C++实现多线程的方式有以下几种:1. 使用C++11标准中的std::thread类:通过创建std::thread对象来创建新的线程,并指定要执行的函数或函数对象。2. 使用C++11标准中的std::async函数:std::asyn
2023-09-21

Java实现多线程的方式有哪些

本篇内容主要讲解“Java实现多线程的方式有哪些”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Java实现多线程的方式有哪些”吧!Java多线程实现方式主要有四种:继承Thread类、实现Run
2023-07-02

java多线程实现的方式有哪些

Java多线程实现的方式有以下几种:1. 继承Thread类:创建一个类继承Thread类,并重写run()方法,在run()方法中实现线程的逻辑。然后通过创建这个类的对象,调用start()方法启动线程。2. 实现Runnable接口:创
2023-09-15

linux多线程实现方式有哪些

在Linux系统中,有多种方式可以实现多线程编程。以下是一些常用的方式:pthreads库:pthreads是POSIX线程标准库,提供了一组用于创建和控制线程的函数。使用pthreads库可以创建、终止、同步和通信线程。OpenMP:Op
2023-10-25

Python协程的面试题有哪些

这篇文章主要介绍“Python协程的面试题有哪些”,在日常操作中,相信很多人在Python协程的面试题有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”Python协程的面试题有哪些”的疑惑有所帮助!接下来
2023-06-02

Python协程的四种实现方式是什么

本篇内容主要讲解“Python协程的四种实现方式是什么”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Python协程的四种实现方式是什么”吧!一、yield关键字实现方式以yield关键字方式实
2023-07-05

python实现多线程的方法有哪些

在Python中,实现多线程的方法有以下几种方式:1. 使用`threading`模块:`threading`模块是Python标准库中提供的多线程实现方式。通过创建`Thread`类的实例,传入要执行的函数作为参数,然后调用`start(
2023-08-15

java实现线程安全的方式有哪些

Java中实现线程安全的方式有以下几种:使用synchronized关键字:通过在方法前加上synchronized关键字或者使用synchronized代码块来同步对共享资源的访问。使用Lock对象:通过使用Lock对象来实现对共享资源的
2023-10-27

java异步编程的实现方式有哪些

这篇文章主要介绍“java异步编程的实现方式有哪些”,在日常操作中,相信很多人在java异步编程的实现方式有哪些问题上存在疑惑,小编查阅了各式资料,整理出简单好用的操作方法,希望对大家解答”java异步编程的实现方式有哪些”的疑惑有所帮助!
2023-07-05

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录