机器学习强基计划5-4:图文详解影响流动与有向分离(D-分离)(附Python实现)
短信预约 -IT技能 免费直播动态提醒
目录
0 写在前面
机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器学习模型:决策树、支持向量机、贝叶斯与马尔科夫决策、强化学习等。
在机器学习强基计划5-2:用一个例子通俗理解贝叶斯网络(附例题)中我们通过一个实例介绍了贝叶斯网络的概念,在机器学习强基计划5-3:图文详解因子分解与独立图I-Map(附例题分析+Python实验)中我们进一步介绍了网络中独立性条件与概率分布的关系,本文基于前面建立起的概念深入贝叶斯网络的微观结构,理解概率影响是如何在网络中传播的
1 影响流动性
贝叶斯网络的微观基本结构及其独立性
来源地址:https://blog.csdn.net/FRIGIDWINTER/article/details/127335425
免责声明:
① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。
② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341