我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Java关于延迟加载的一些应用实践

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Java关于延迟加载的一些应用实践

 代码中的很多操作都是Eager的,比如在发生方法调用的时候,参数会立即被求值。总体而言,使用Eager方式让编码本身更加简单,然而使用Lazy的方式通常而言,即意味着更好的效率。

延迟初始化

一般有几种延迟初始化的场景:

  •  对于会消耗较多资源的对象:这不仅能够节省一些资源,同时也能够加快对象的创建速度,从而从整体上提升性能。
  •  某些数据在启动时无法获取:比如一些上下文信息可能在其他拦截器或处理中才能被设置,导致当前bean在加载的时候可能获取不到对应的变量的值,使用 延迟初始化可以在真正调用的时候去获取,通过延迟来保证数据的有效性。

在Java8中引入的lambda对于我们实现延迟操作提供很大的便捷性,如Stream、Supplier等,下面介绍几个例子。

Lambda

Supplier

通过调用get()方法来实现具体对象的计算和生成并返回,而不是在定义Supplier的时候计算,从而达到了_延迟初始化_的目的。但是在使用 中往往需要考虑并发的问题,即防止多次被实例化,就像Spring的@Lazy注解一样。 

  1. public class Holder {  
  2.     // 默认第一次调用heavy.get()时触发的同步方法  
  3.     private Supplier<Heavy> heavy = () -> createAndCacheHeavy();   
  4.     public Holder() {  
  5.         System.out.println("Holder created");  
  6.     }  
  7.     public Heavy getHeavy() {  
  8.         // 第一次调用后heavy已经指向了新的instance,所以后续不再执行synchronized  
  9.         return heavy.get();   
  10.     } 
  11.     //...  
  12.     private synchronized Heavy createAndCacheHeavy() {  
  13.         // 方法内定义class,注意和类内的嵌套class在加载时的区别  
  14.         class HeavyFactory implements Supplier<Heavy> {  
  15.             // 饥渴初始化  
  16.             private final Heavy heavyInstance = new Heavy();   
  17.             public Heavy get() {  
  18.                 // 每次返回固定的值 
  19.                 return heavyInstance;   
  20.             }   
  21.         }       
  22.         //第一次调用方法来会将heavy重定向到新的Supplier实例  
  23.         if(!HeavyFactory.class.isInstance(heavy)) {  
  24.             heavy = new HeavyFactory();  
  25.         }  
  26.         return heavy.get();  
  27.     }  

当Holder的实例被创建时,其中的Heavy实例还没有被创建。下面我们假设有三个线程会调用getHeavy方法,其中前两个线程会同时调用,而第三个线程会在稍晚的时候调用。

当前两个线程调用该方法的时候,都会调用到createAndCacheHeavy方法,由于这个方法是同步的。因此第一个线程进入方法体,第二个线程开始等待。在方法体中会首先判断当前的heavy是否是HeavyInstance的一个实例。

如果不是,就会将heavy对象替换成HeavyFactory类型的实例。显然,第一个线程执行判断的时候,heavy对象还只是一个Supplier的实例,所以heavy会被替换成为HeavyFactory的实例,此时heavy实例会被真正的实例化。

等到第二个线程进入执行该方法时,heavy已经是HeavyFactory的一个实例了,所以会立即返回(即heavyInstance)。当第三个线程执行getHeavy方法时,由于此时的heavy对象已经是HeavyFactory的实例了,因此它会直接返回需要的实例(即heavyInstance),和同步方法createAndCacheHeavy没有任何关系了。

以上代码实际上实现了一个轻量级的虚拟代理模式(Virtual Proxy Pattern)。保证了懒加载在各种环境下的正确性。

还有一种基于delegate的实现方式更好理解一些:

https://gist.github.com/taichi/6daf50919ff276aae74f 

  1. import java.util.concurrent.ConcurrentHashMap;  
  2. import java.util.concurrent.ConcurrentMap;  
  3. import java.util.function.Supplier;  
  4. public class MemoizeSupplier<T> implements Supplier<T> {  
  5.  final Supplier<T> delegate;  
  6.  ConcurrentMap<Class>, T> map = new ConcurrentHashMap<>(1);  
  7.  public MemoizeSupplier(Supplier<T> delegate) {  
  8.   this.delegate = delegate;  
  9.  }  
  10.  @Override  
  11.  public T get() {  
  12.      // 利用computeIfAbsent方法的特性,保证只会在key不存在的时候调用一次实例化方法,进而实现单例  
  13.   return this.map.computeIfAbsent(MemoizeSupplier.class,  
  14.     k -> this.delegate.get());  
  15.  }  
  16.  public static <T> Supplier<T> of(Supplier<T> provider) {  
  17.   return new MemoizeSupplier<>(provider);  
  18.  }  

以及一个更复杂但功能更多的CloseableSupplier: 

  1. public static class CloseableSupplier<T> implements Supplier<T>, Serializable {  
  2.         private static final long serialVersionUID = 0L 
  3.         private final Supplier<T> delegate;  
  4.         private final boolean resetAfterClose; 
  5.         private volatile transient boolean initialized;  
  6.         private transient T value;  
  7.         private CloseableSupplier(Supplier<T> delegate, boolean resetAfterClose) {  
  8.             this.delegate = delegate;  
  9.             this.resetAfterClose = resetAfterClose;  
  10.         }  
  11.         public T get() {  
  12.             // 经典Singleton实现  
  13.             if (!(this.initialized)) { // 注意是volatile修饰的,保证happens-before,t一定实例化完全  
  14.                 synchronized (this) {  
  15.                     if (!(this.initialized)) { // Double Lock Check  
  16.                         T t = this.delegate.get();  
  17.                         tthis.value = t;  
  18.                         this.initialized = true 
  19.                         return t;  
  20.                     }  
  21.                 }  
  22.             }  
  23.             // 初始化后就直接读取值,不再同步抢锁  
  24.             return this.value;  
  25.         } 
  26.         public boolean isInitialized() {  
  27.             return initialized;  
  28.         }  
  29.         public <X extends Throwable> void ifPresent(ThrowableConsumer<T, X> consumer) throws X {  
  30.             synchronized (this) {  
  31.                 if (initialized && this.value != null) {  
  32.                     consumer.accept(this.value);  
  33.                 }  
  34.             }  
  35.         } 
  36.         public <U> Optional<U> map(Function super T, ? extends U> mapper) {  
  37.             checkNotNull(mapper);  
  38.             synchronized (this) {  
  39.                 if (initialized && this.value != null) {  
  40.                     return ofNullable(mapper.apply(value));  
  41.                 } else {  
  42.                     return empty();  
  43.                 }  
  44.             }  
  45.         }  
  46.         public void tryClose() {  
  47.             tryClose(i -> { });  
  48.         }  
  49.         public <X extends Throwable> void tryClose(ThrowableConsumer<T, X> close) throws X {  
  50.             synchronized (this) {  
  51.                 if (initialized) {  
  52.                     close.accept(value);  
  53.                     if (resetAfterClose) {  
  54.                         this.value = null 
  55.                         initialized = false 
  56.                     }  
  57.                 }  
  58.             }  
  59.         }  
  60.         public String toString() {  
  61.             if (initialized) {  
  62.                 return "MoreSuppliers.lazy(" + get() + ")";  
  63.             } else {  
  64.                 return "MoreSuppliers.lazy(" + this.delegate + ")";  
  65.             }  
  66.         }  
  67.     } 

Stream

Stream中的各种方法分为两类:

  •  中间方法(limit()/iterate()/filter()/map())
  •  结束方法(collect()/findFirst()/findAny()/count())

前者的调用并不会立即执行,只有结束方法被调用后才会依次从前往后触发整个调用链条。但是需要注意,对于集合来说,是每一个元素依次按照处理链条执行到尾,而不是每一个中间方法都将所有能处理的元素全部处理一遍才触发 下一个中间方法。比如: 

  1. List<String> names = Arrays.asList("Brad", "Kate", "Kim", "Jack", "Joe", "Mike");  
  2. final String firstNameWith3Letters = names.stream()  
  3.     .filter(name -> length(name) == 3)  
  4.     .map(name -> toUpper(name))  
  5.     .findFirst()  
  6.     .get();  
  7. System.out.println(firstNameWith3Letters); 

当触发findFirst()这一结束方法的时候才会触发整个Stream链条,每个元素依次经过filter()->map()->findFirst()后返回。所以filter()先处理第一个和第二个后不符合条件,继续处理第三个符合条件,再触发map()方法,最后将转换的结果返回给findFirst()。所以filter()触发了_3_次,map()触发了_1_次。

好,让我们来看一个实际问题,关于无限集合。

Stream类型的一个特点是:它们可以是无限的。这一点和集合类型不一样,在Java中的集合类型必须是有限的。Stream之所以可以是无限的也是源于Stream「懒」的这一特点。

Stream只会返回你需要的元素,而不会一次性地将整个无限集合返回给你。

Stream接口中有一个静态方法iterate(),这个方法能够为你创建一个无限的Stream对象。它需要接受两个参数:

public static Stream iterate(final T seed, final UnaryOperator f)

其中,seed表示的是这个无限序列的起点,而UnaryOperator则表示的是如何根据前一个元素来得到下一个元素,比如序列中的第二个元素可以这样决定:f.apply(seed)。

下面是一个计算从某个数字开始并依次返回后面count个素数的例子: 

  1. public class Primes {      
  2.     public static boolean isPrime(final int number) {  
  3.         return number > 1 &&  
  4.             // 依次从2到number的平方根判断number是否可以整除该值,即divisor  
  5.             IntStream.rangeClosed(2, (int) Math.sqrt(number))  
  6.                 .noneMatch(divisor -> number % divisor == 0);  
  7.     }   
  8.     private static int primeAfter(final int number) {  
  9.         if(isPrime(number + 1)) // 如果当前的数的下一个数是素数,则直接返回该值  
  10.             return number + 1;  
  11.         else // 否则继续从下一个数据的后面继续找到第一个素数返回,递归  
  12.             return primeAfter(number + 1);  
  13.     }  
  14.     public static List<Integer> primes(final int fromNumber, final int count) {  
  15.         return Stream.iterate(primeAfter(fromNumber - 1), Primes::primeAfter)  
  16.             .limit(count)  
  17.             .collect(Collectors.<Integer>toList());  
  18.     }  
  19.     //...  

对于iterate和limit,它们只是中间操作,得到的对象仍然是Stream类型。对于collect方法,它是一个结束操作,会触发中间操作来得到需要的结果。

如果用非Stream的方式需要面临两个问题:

  •  一是无法提前知晓fromNumber后count个素数的数值边界是什么
  •  二是无法使用有限的集合来表示计算范围,无法计算超大的数值

即不知道第一个素数的位置在哪儿,需要提前计算出来第一个素数,然后用while来处理count次查找后续的素数。可能primes方法的实现会拆成两部分,实现复杂。如果用Stream来实现,流式的处理,无限迭代,指定截止条件,内部的一套机制可以保证实现和执行都很优雅。 

 

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Java关于延迟加载的一些应用实践

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Java关于延迟加载的一些应用实践

在Java8中引入的lambda对于我们实现延迟操作提供很大的便捷性,如Stream、Supplier等,下面介绍几个例子。

懒加载与延迟加载在PHP接口性能优化中的实践(PHP接口性能优化中懒加载与延迟加载的运用)

懒加载和延迟加载是PHP接口性能优化的有效技术。懒加载在需要时才加载资源,而延迟加载在页面加载后延迟加载非关键功能。在PHP中,可以使用lazy_load扩展实现图像懒加载。对于非关键脚本和样式表,可以使用JavaScript的defer和media="print"属性实现延迟加载。这些技术可以减少初始页面加载时间、提升响应速度和降低内存消耗,但可能会增加延迟加载后的延迟时间,并且不适用于所有资源。最佳实践包括仅对非关键资源使用懒加载和延迟加载、避免对关键内容使用延迟加载、使用适当的加载策略,并监控影响并
懒加载与延迟加载在PHP接口性能优化中的实践(PHP接口性能优化中懒加载与延迟加载的运用)
2024-04-02

百亿节点,毫秒级延迟,携程金融基于nebula的大规模图应用实践

本文主要分享nebula在携程金融的实践,希望能带给大家一些实践启发。

VUE 路由动态加载的最佳实践:让您的应用更上一层楼

动态加载路由是 VUE 应用中实现代码分割和按需加载的最佳实践。本文将探讨如何使用 VUE 路由的动态组件特性来实现动态加载,并分享一些最佳实践技巧,帮助您提高应用的性能和用户体验。
VUE 路由动态加载的最佳实践:让您的应用更上一层楼
2024-02-08

VUE路由动态加载的实践技巧:一步一步打造灵活的前端应用

VUE路由动态加载是实现前端应用动态加载和路由控制的重要技术,它可以根据不同的路由参数动态加载不同的组件,从而实现更加灵活的前端应用。本文将一步一步演示如何使用VUE路由实现动态加载,包括如何配置路由规则、如何创建动态组件、以及如何使用vue-router-loadable实现动态加载。
VUE路由动态加载的实践技巧:一步一步打造灵活的前端应用
2024-02-13

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录