我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python灰度变换中位图切割分析实现

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python灰度变换中位图切割分析实现

1. 介绍

图像的像素值是由比特组成的。例如一副256级灰度图像中,图像是由8 bit组成。

与之前对比度拉伸的区别是,之前我们主要强调在某一范围的灰度值作为我们能感兴趣的目标将其变亮或者变暗。而位图切割主要强调每个bit对图像的贡献,通过方法将不同位的灰度值值取出来还原成图像。

如图所示,一副8 bit图像,我们可以将图像分割成8个,将每个图像对应的比特位取出构建成一副新的图像

2. 实现方法

例如图像某一点的像素值为100,对应的二进制为0110 0100

我们的目标很简单,就是将第1位的0取出来(这里不要把100看成一个数,将他想象成一幅图像的所有点,我们要把图像像素对应二进制的第一位全部取出,组成一副新的图像)以此类推...

最后为了防止取出的灰度值过暗,我们将他映射到最大值255

这里提供两种方法实现:

  • 将图像的二进制和对应的 8bit 相与(0000 0000),例如取第0个比特平面的话图像就和(0000 0001)与。所以结果只能是0000 000X (X取决于图像的最低位),如果X = 1的话,我们认为这个点的像素在 0bit平面有值,将它映射为255;否则为0
  • 图像像素除以 2^n (n代表第n个比特平面,n从0开始,为了满足编程下标从0开始计数),如果商的整数部分为1的话,说明这个点在n比特平面有值,映射为255;否则为0

注:

  • 这里映射为255为了突出对应比特平面的亮度,否则就算再最高的比特平面,最大值也只有128灰度值(因为最高的是第7为,2^7 = 128)
  • 如果利用第一种与的方法,但是最后不要拉伸成255,只是把与的结果作为新的图像输出。那么只需要将8副图像全部加起来就可以还原图像

3. code

这里用第二种÷的方法实现

如果用第一种与的方法的话,只需要将中间的代码段替换成后面的就行,结果是一样的

import cv2
import numpy as np
gray = cv2.imread('./img.jpg',0)
img = cv2.resize(gray,None,fx = 0.5,fy = 0.5,interpolation=cv2.INTER_AREA)  #缩小图像
group = []   # 存放每一层的图像
for n in range(8):
    dst = np.zeros_like(img)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            ret = img[i][j] // pow(2,n)       #ret = img[i][j] & pow(2,n)
            if (ret % 2) ==1:                 # if (ret ==pow(2,n)):
                dst[i][j] = 255
            else:
                dst[i][j] = 0
    group.append(dst)
cv2.imshow('0-3',np.hstack((i for i in group[:4])))
cv2.imshow('4-7',np.hstack((i for i in group[4:])))
cv2.waitKey()
cv2.destroyAllWindows()

输入图像:

输出结果:

4. 比特平面重建图像

如果还原图像的话,我们再输出图像的时候,就不要映射到255,之间将图像与比特平面相与的结果输出即可

import cv2
import numpy as np
gray = cv2.imread('./img.jpg',0)
img = cv2.resize(gray,None,fx = 0.5,fy = 0.5,interpolation=cv2.INTER_AREA)  #缩小图像
group = []   # 存放每一层的图像
for n in range(8):
    dst = np.zeros_like(img)
    for i in range(img.shape[0]):
        for j in range(img.shape[1]):
            ret = img[i][j] & pow(2,n)
            dst[i][j] = ret   # 将与的结果作为图像
    group.append(dst)
cv2.imshow('0-3',np.hstack((i for i in group[:4])))
cv2.imshow('4-7',np.hstack((i for i in group[4:])))
a = np.zeros_like(img)   # 还原
for i in group:
    a += i
cv2.imshow('img',a)
cv2.waitKey()
cv2.destroyAllWindows()

输出比特平面:

所以图像相加为:

到此这篇关于Python灰度变换中位图切割分析实现的文章就介绍到这了,更多相关Python位图切割内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python灰度变换中位图切割分析实现

下载Word文档到电脑,方便收藏和打印~

下载Word文档

猜你喜欢

Python中图像灰度非线性变换的示例分析

这篇文章将为大家详细讲解有关Python中图像灰度非线性变换的示例分析,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。一.图像灰度非线性变换原始图像的灰度值按照DB=DA×DA/255的公式进行
2023-06-29

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录