我的编程空间,编程开发者的网络收藏夹
学习永远不晚

Python matplotlib绘制散点图配置(万能模板案例)

短信预约 -IT技能 免费直播动态提醒
省份

北京

  • 北京
  • 上海
  • 天津
  • 重庆
  • 河北
  • 山东
  • 辽宁
  • 黑龙江
  • 吉林
  • 甘肃
  • 青海
  • 河南
  • 江苏
  • 湖北
  • 湖南
  • 江西
  • 浙江
  • 广东
  • 云南
  • 福建
  • 海南
  • 山西
  • 四川
  • 陕西
  • 贵州
  • 安徽
  • 广西
  • 内蒙
  • 西藏
  • 新疆
  • 宁夏
  • 兵团
手机号立即预约

请填写图片验证码后获取短信验证码

看不清楚,换张图片

免费获取短信验证码

Python matplotlib绘制散点图配置(万能模板案例)

散点图

散点图是指在 回归分析中,数据点在直角坐标系平面上的 分布图,散点图表示因变量随 自变量而 变化的大致趋势,据此可以选择合适的函数 对数据点进行 拟合。

用两组数据构成多个坐标点,考察坐标点的分布,判断两变量之间是否存在某种关联或总结坐标点的分布模式。散点图将序列显示为一组点。值由点在 图表中的位置表示。类别由图表中的不同标记表示。散点图通常用于比较跨类别的聚合数据。

下面给出一个散点图的具体代码案例

import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

plt.figure(figsize=(9,5), # (宽度 , 高度) 单位inch
dpi=120, # 清晰度 dot-per-inch
# facecolor='#CCCCCC', # 画布底色
# edgecolor='black',linewidth=0.2,frameon=True, # 画布边框
#frameon=False # 不要画布边框
)
# 设置全局中文字体
plt.rcParams['font.sans-serif'] = 'KaiTi' # 设置全局字体为中文 楷体
plt.rcParams['axes.unicode_minus'] = False # 不使用中文减号
#读取数据
crime=pd.read_csv("crimeRatesByState2005.csv")
print (list(crime.murder))#转化成列表
#删除state为United States的数据
crime2 = crime[crime.state != "United States"]
#删除state为District of Columbia的数据
crime2 = crime2[crime2.state != "District of Columbia" ]
z = list(crime2.population/10000)#取人口数据
#colors = np.random.rand(len(list(crime2.murder)))#根据谋杀率随机去颜色
cm = plt.cm.get_cmap('RdYlBu')#使用色谱RdYlBu
plt.scatter(list(crime2.murder), list(crime2.burglary), s=z,c=z,cmap = cm, linewidth = 0.5, alpha = 0.5)#绘制散点图
plt.xlabel("murder")
plt.ylabel("burglary")
plt.show()

散点图一行代码显示

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
# 根据X,Y值画散点图
plt.scatter(x,y)

加颜色的散点图

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
c = df['species'].map({'setosa':'r','versicolor':'g','virginica':'b'})
# 根据X,Y值画散点图, 用不同的颜色标识不同的分类
plt.scatter(x,y, c=c)

颜色深浅表示数值大小

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length']
y = df['sepal_width']
c = df['petal_length']
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度
plt.scatter(x,y, c=c, cmap=plt.cm.RdYlBu)

散点图显示颜色和大小

# 读取数据
df = pd.read_csv('iris.csv')
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
plt.scatter(x,y, c=c, s=s*30)

自定义图表散点图

# 读取数据
df = pd.read_csv('iris.csv')
def get_xycs(df):
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
return x,y,c,s
markers = {'setosa':'o', 'versicolor':'D', 'virginica':'*'}
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度, 每组数据只能是一种点样式
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
for sp in df['species'].unique():
x,y,c,s = get_xycs(df[df['species']==sp])
plt.scatter(x,y, c=c, s=s*30, cmap=plt.cm.seismic, marker=markers[sp],label=sp)
plt.legend()

散点图万能模板

# 读取数据
df = pd.read_csv('iris.csv')
def get_xycs(df):
# 平面坐标系的位置只能表示2维数据
x = df['sepal_length'] # x 轴坐标
y = df['sepal_width'] # y 轴坐标
c = df['petal_length'] # 颜色color
s = df['petal_width'] # 大小size
return x,y,c,s
markers = {'setosa':'o', 'versicolor':'D', 'virginica':'*'}
# 根据X,Y值画散点图, 用颜色的深浅表示花萼的长度,用大小表示花萼的宽度, 每组数据只能是一种点样式
plt.figure(figsize=(5,5),dpi=100)
#plt.scatter(x,y, c=c, s=50) # 可以是标量,那么所有的点都一样
for sp in df['species'].unique():
x,y,c,s = get_xycs(df[df['species']==sp])
plt.scatter(x,y, s=s*30, cmap=plt.cm.seismic, marker=markers[sp],label=sp)
plt.legend()

其他模板

### 在二维坐标系上,位置表示(x,y)二维数据
x = df.sepal_length # x 表示花瓣长
y = df.sepal_width # y 表示花瓣宽
s = (df.petal_length * df.petal_width)*np.pi # s(size) 表示花萼面积
c = (df.petal_length * df.petal_width)*np.pi
plt.scatter(x,y,s=s*5, c=c,cmap=plt.cm.RdYlBu_r)
plt.xlabel('sepal_length')
plt.ylabel('sepal_width')

# 在二维坐标系上,位置表示(x,y)二维数据
x = df.sepal_length # x 表示花瓣长
y = df.sepal_width # y 表示花瓣宽
s = (df.petal_length * df.petal_width)*np.pi # s(size) 表示花萼面积
#print(df.species)
#colormap = {"setosa":"#FF0000", "versicolor":"green", "virginica":"b"} # 定义一个字典将species字符串映射到颜色字符串上
colormap = {"setosa":1, "versicolor":5, "virginica":6} # 定义一个字典将species字符串映射到颜色字符串上
c = df.species.map(colormap)
#print(c)
plt.scatter(x,y,s=s*5, c=c,cmap=plt.cm.coolwarm, alpha=0.7, edgecolors='face')
plt.xlabel('sepal_length')
plt.ylabel('sepal_width')

plt.scatter(df['burglary'], df['larceny_theft'],
s=df['population']*2e-5,
c=df['motor_vehicle_theft'], cmap=plt.cm.coolwarm,
edgecolors='b',
alpha=0.75)

for idx,statename in df['state'].items():
plt.text(x=df['burglary'][idx],y=df['larceny_theft'][idx]-df['population'][idx]*2e-5*0.5,s=statename,fontsize=6,ha='center',va='top')

df.plot.scatter(x='burglary',y='larceny_theft',c='motor_vehicle_theft',cmap=plt.cm.coolwarm,s=df['population']*2e-5)
for i in df.index:
if i in top5_motor_theft_index: # 偷车贼最多的5个州
plt.text(df.loc[i,'burglary']+10, df.loc[i,'larceny_theft']-10, df.loc[i,'state'], color='red') # 一个文本框

到此这篇关于Python matplotlib绘制散点图配置(万能模板案例)的文章就介绍到这了,更多相关python matplotlib绘制散点图 内容请搜索编程网以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程网!

免责声明:

① 本站未注明“稿件来源”的信息均来自网络整理。其文字、图片和音视频稿件的所属权归原作者所有。本站收集整理出于非商业性的教育和科研之目的,并不意味着本站赞同其观点或证实其内容的真实性。仅作为临时的测试数据,供内部测试之用。本站并未授权任何人以任何方式主动获取本站任何信息。

② 本站未注明“稿件来源”的临时测试数据将在测试完成后最终做删除处理。有问题或投稿请发送至: 邮箱/279061341@qq.com QQ/279061341

Python matplotlib绘制散点图配置(万能模板案例)

下载Word文档到电脑,方便收藏和打印~

下载Word文档

编程热搜

  • Python 学习之路 - Python
    一、安装Python34Windows在Python官网(https://www.python.org/downloads/)下载安装包并安装。Python的默认安装路径是:C:\Python34配置环境变量:【右键计算机】--》【属性】-
    Python 学习之路 - Python
  • chatgpt的中文全称是什么
    chatgpt的中文全称是生成型预训练变换模型。ChatGPT是什么ChatGPT是美国人工智能研究实验室OpenAI开发的一种全新聊天机器人模型,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,并协助人类完成一系列
    chatgpt的中文全称是什么
  • C/C++中extern函数使用详解
  • C/C++可变参数的使用
    可变参数的使用方法远远不止以下几种,不过在C,C++中使用可变参数时要小心,在使用printf()等函数时传入的参数个数一定不能比前面的格式化字符串中的’%’符号个数少,否则会产生访问越界,运气不好的话还会导致程序崩溃
    C/C++可变参数的使用
  • css样式文件该放在哪里
  • php中数组下标必须是连续的吗
  • Python 3 教程
    Python 3 教程 Python 的 3.0 版本,常被称为 Python 3000,或简称 Py3k。相对于 Python 的早期版本,这是一个较大的升级。为了不带入过多的累赘,Python 3.0 在设计的时候没有考虑向下兼容。 Python
    Python 3 教程
  • Python pip包管理
    一、前言    在Python中, 安装第三方模块是通过 setuptools 这个工具完成的。 Python有两个封装了 setuptools的包管理工具: easy_install  和  pip , 目前官方推荐使用 pip。    
    Python pip包管理
  • ubuntu如何重新编译内核
  • 改善Java代码之慎用java动态编译

目录